大数据时代下,如何挖掘长尾应用
但在移动互联网时代,应用市场的应用并没有像“长尾理论”一样达到有效的分发,而更趋近于“二八定律”,艾瑞曾有报告指出:几乎每一个垂直细分领域,都是一到三款主流应用几乎占据了80%的用户的手机桌面,剩下的80%的APP要去抢夺剩下20%的用户。对于用户来说,如果有适合自己的优秀应用被埋没在80%中,实在是一件悲剧的事情。
用户是如何寻找心仪的app的
我们说互联网时代是信息爆炸的时代,而移动互联网时代绝对是APP爆炸的时代,据公开报告,截止2014年年底,谷歌Play Store的应用数量已达到了143万,而Apple Store的应用数量也已经超过121万。在如此多的应用中如何找到自己感兴趣的应用?
一般来说,用户寻找应用的方法有3种,第1种是直接搜索,这种方式一般是针对必备应用(比如微信)或者自己知道的热门应用(比如华尔街日报)。第2种是应用市场中的推荐或排行榜,这种推荐大部分是广告行为,应用不一定真正满足用户的喜好,而且排行榜上的应用可谓“百年不变”,很难满足用户探索新应用的好奇心。第3种是推荐应用的应用,比如最美应用,这种应用可以让不少并不大众的应用得到曝光并让用户了解和使用,但问题同样存在,它通常每天只推荐有限的几款应用,而对于大批量的优质长尾应用的曝光度不够,并且对于编辑人员来说,每天从浩如烟海的应用中挑选应用实在是一件费时费力的事。
上述三种寻找应用的方式各有优劣,但它们有一个共同的缺陷,那就是忽略了大批长尾应用中的优秀应用。在移动互联网时代,可能每天都会诞生优秀的应用,这些应用可能不为人知,短期内也没法登上排行榜,却可能是受人们喜欢的潜在应用,这样的应用受到了大部分应用市场的忽略。
基于长尾应用的解决之道
挖掘应用市场中的长尾应用无论对用户还是对企业都有巨大的价值,随着大数据时代的到来,长尾应用被发掘的几率越来越大,目前对于长尾应用的挖掘大概有两种方式。一种是上文说到的类似最美应用这样的推荐类app,不少媒体和产品都会基于自己的特性为用户推荐app,比如豌豆荚中有一个“关注”分类,如果你关注了类似虎嗅网,好奇心日报这类媒体或应用,就可以收到它们的推荐信息。第二种也是大部分应用市场最常用的方式,即根据用户的下载历史和动作推荐用户可能喜欢的应用,这背后的算法便基于大数据分析。
除以上两种方式之外,目前我还发现了一种专门基于长尾优秀应用推荐的地图式应用推荐,比如石榴掌游,它本质上是一款可视化内容推荐平台,但它并不像大部分应用市场那样只推荐某几款热门应用,打开石榴掌游你会看到琳琅满目的应用(现在以游戏为主),它用算法按照相似程度把手游排列在一起,越近的就越相似,越远的就越不同,就如同手握一张手游世界地图一样,一旦你点击某个图标,就会看到此应用的具体介绍、图片以及玩家上传的视频,通过这些信息用户便可以判断游戏是否是自己喜欢的类型。石榴掌游上陈列着数不清的长尾游戏应用,打开它的界面你就像进入一个百宝箱一样,在里面寻觅自己感兴趣的应用。同时石榴掌游也是一个背后依托强大机器学习算法的应用,它可以根据用户手机的自有应用预测用户可能喜欢的应用,也可以根据用户的浏览和下载记录判断用户的喜好,从而为用户提供更精准的推荐。
大数据时代的意义在于每个人无论购买什么产品,都会收到与自己的真实需求异常契合的产品推荐,产品推荐或广告对于每个人来说都是独特的,定制化的,广告或产品不再是一种打扰,而是需求。可以预见在大数据分析技术越来越成熟的未来,长尾产品的市场和价值将会越来越大。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21