大数据时代,相关部门掌握的数据越来越重要
那么,大数据的“根”在哪里?
共享是大数据的“根”
大数据与云计算,或许就像一枚神奇的金币的正反面,让许多人感觉“云里雾里”、亦真亦幻,却又能真切地感受到金币的光芒。
什么是大数据?按照维基百科的定义,大数据是指无法在可承受时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。它的基本特点可以概括为海量的数据规模、快速的数据流动和动态的数据体系、多样的数据类型、巨大的数据价值。如果将单个或局部领域的数据及其挖掘处理视为小数据,那么关于某一主体的大数据就是由成千上万、相互关联、相互交织的小数据汇聚而成的。小数据的充分融合,就是大数据形成的根基。譬如一滴水,唯有与别的水滴融合在一起,才能形成水流,才能汇成江河、海洋,才能发挥水的价值。这种融合就是共享。没有小数据的共享,就没有大数据生长的“根”。
要从海量的数据中快速地分析、挖掘出有用的信息,单台计算机已难以胜任,必须采用分布式架构,依托云计算的分布式处理、分布式数据和云存储、虚拟化技术,即透过网络将庞大的计算处理程序自动分拆成无数个较小的子程序,再交由多部服务器所组成的庞大系统经搜寻、计算、分析之后将处理结果回传给用户。这就是与大数据相依相存的云计算。显然,如果没有数据的共享,云计算也是“无米之炊”。当然,数据能否共享,涉及到数据的开放性、法律边界、数据价值实现等问题,还面临诸多现实障碍。
谁阻碍了数据共享?
当我们沉醉于大数据的奇妙与魔法无边的时候,现实世界却给了我们一记响亮的耳光——大家沮丧地发现,许多政府公共信息仍处于零散、分割、封闭状态。
各级政府部门在履职过程中掌握了大量的数据信息,其中涉及企业或个人的数据最为丰富。目前普遍认为比较有用的企业信息大致包括四个方面,一是反映企业基本情况的,二是反映企业真实经营状况的,三是反映企业及企业主资信状况及守法情况的,四是反映企业融资、财产抵质押、对外担保等情况的。这些涉及企业的各种信息资源散落在不同的政府管理部门,总体处于彼此分割、孤立、封闭状态,没有实现数据之间的共享、连接和融合,更谈不上大数据价值的体现。
尽管近年来,各级政府都在积极搭建公共信用信息平台,推动社会征信体系建设,特别是在相关文件出台后,步伐进一步加快,各部门也大多建立了自身的信息管理系统,但部门之间信息不共享或共享不充分仍是常态。即使有一些全国性、地区性的统一信息平台,所含企业信息也非常有限,且不完整、不及时。
这种信息割裂的状态,不仅不利于大数据的发展,从眼前看,则对具体运用大数据的相关主体的发展形成阻碍。比如,银行业在服务实体经济特别是小微企业过程中,面临的突出瓶颈之一,就是信息瓶颈。银行业开展小微企业信贷业务面临的最大困惑是信息不对称。信息的不对称使银行在发放小微企业贷款时难免如履薄冰,顾忌甚多。因此,能否切实掌握和了解反映企业真实经营状况、企业及企业主资信状况等相关信息,在很大程度上决定了银行对小微企业放贷的意愿以及介入小微企业信贷领域的深度。
目前客观存在的企业信息共享“难”,根源在于部门利益。相关部门在参与公共信用信息平台建设时,出于种种原因,往往叫得响、做得少。一些部门出于商业利益,将自身所拥有的大量公共信息视为“私有财产”,以有偿作为提供信息的条件;或以维护商业秘密、涉及部门机密为由,不愿将拥有的、本属于公共资源的企业信息与其他部门共享,或者象征性地扔几根“骨头”,人为造成了企业信息的分割、残缺,也造就了许多“僵尸”信息平台;有些信息的共享按说不应存在障碍,只因为一些数据拥有的部门感觉“吃力不讨好”,缺乏主动提供数据的动力。
当然,也不排除个别地方政府从局部利益出发,对可能影响当地企业发展的行政处罚类负面、失信信息的公开加以阻扰,影响信息数据的共享。深层的原因,则是社会信用体系建设法制化步伐缓慢,公共信息征集机制不健全,对相关部门提供、公开相关政务信息缺乏有效的约束,以及信用信息使用在公开与保密之间的法律边界不清晰。
小数据不能共享,大数据必是空谈。所以,看大势、顾大局、破本位,推进小数据共享,是政府部门在大数据时代应有的思维。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26