京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业掘金大数据的两种选择
究竟如何才能把数据转化为利润呢? 对大多数公司来说, 有两种选择, 一是数据导向的流程, 二是数据导向的产品。
如今,你到哪儿都能听到大数据。别说是亚马逊这样的公司,现在就是一个小的Startup, 每天也能有几个G的数据量。 而像Instagram 这样的照片分享网站,每天轻松就能产生出500T的数据量。 不少企业的CEO们都会问一个问题:“好,现在我有这么多数据,下一步我该怎么做呢?”
一个人, 如果只是站在金矿的土地上而不去挖掘的话, 他也成不了富翁。 同样的, 拥有大量数据并不能代表你的企业就能成功。 这个行业里面成功的是例如亚马逊, NetFlix那样, 能够比竞争对手更好的利用数据的公司。 否则的话, 你也只能干瞪着眼看着一堆Hadoop集群而不知道如何去做。 可是, 要是你能好好的利用你的数据, 你就能够在竞争中领先一步。
那么, 究竟如何才能把数据转化为利润呢? 对大多数公司来说, 有两种选择, 一是数据导向的流程, 二是数据导向的产品。
以数据为导向的业务流程:
传统的数据分析师,使用Excel或者会编写SQL语句进行特定查询。 而如今, 这些就远远不够了。 如今的数据科学家, 需要了解小数据时代和大数据时代的各种工具, 包括传统的商业智能工具, 查询语言, 统计, 甚至机器学习。
好的数据科学家可以帮助企业从分析产品, 比如哪些产品受欢迎, 为什么, 哪些产品用户不喜欢(比如Zynga就是这么做的), 到建立预测模型, 分析将来趋势, 以帮助现在的决策(比如沃尔玛实验室就是在这么做)。
下面是一些具体的例子:
1) 如果你是销售软件即服务(SaaS)应用, 数据科学家可以帮助你分析高端客户的特征, 比如他们转化的渠道, 他们的基本共性(年龄, 性别, 收入水平, 地域等),以及他们使用你的应用的特别方式等。 这样, 你可以更加有针对性的设计你的产品功能, 推出针对性的广告,优化市场推广渠道, 从而提高你的利润率。
2) 数据科学家可以帮助你分析某类产品的价格对其他类别产品销量的影响, 从而帮助你优化你的整个价格体系。
3) 数据科学家可以基于历史数据, 建立一个准确的预测模型。 比如如百货公司Target那样, 能够确定哪些顾客是怀孕的妇女, 或者像一些保险公司一样, 能够预测哪些来咨询的潜在客户最有可能转化为客户。
4) 数据科学家还能够让你更好的利用现有的数据分析运营结果。 比如, 数据科学家会建议你把你的市场营销数据, 和网站访问日志以及交易数据进行关联, 从而能够衡量市场推广活动的有效性。
以数据为导向的产品:
除了以数据为导向的流程外, 还可以把利用数据来丰富产品的功能。 有的公司, 还把数据专门打包成为一个产品来销售。
比如Twitter, 他本身的产品不是数据产品, 但是, 他通过授权其他公司如DataSift这样的公司使用它的数据, DataSift这样的公司则利用Twitter的数据做成针对企业的数据产品来帮助企业更好地利用社交媒体。 还有一些媒体公司, 把观众观看的数据打包, 卖给一些频道或者内容制作公司。
不过, 相对于把数据打包出售直接获取收入, 更多的公司则是利用数据, 提高现有的产品, 使它们更加有效率, 更加智能 更加符合用户需求, 从而直接或间接地增加收入。
下面举一些实际的例子来说明数据如何使产品更加智能, 更加符合用户需求:
1) 为了提高广告平台的点击率, 广告平台通过分析广告播放媒体, 广告本身, 以及用户的行为。 把广告展现给最合适的用户。
2) 电子商务网站, 通过推荐系统中的数据分析和机器学习, 提高用户对推荐产品的购买可能性。
3) 媒体网站通过分析用户特征, 给不同的用户展现不同的内容网页, 提高用户在网站的停留时间, 从而获得更多的广告收入。
4) 视频发布平台通过分析用户的观看和互动行为, 给视频制作者关于用户喜好的各种反馈, 从而制作出更加满足用户喜好的视频。 这是一个间接增加收入的例子。 通过数据分析, 来提高视频平台的受欢迎程度。
企业应该如何开始行动
那么作为企业, 应该如何开始准备, 把冷冰冰的数据变成金灿灿的钱呢? 下面是一些建议:
1) 尽可能多的保存各种数据。 如今, 存储的成本已经不是一个需要考虑的因素了。 要记住, 再好的分析, 没有数据也是不行的。 有很多数据, 即使现在没有办法分析, 也要尽量把它们存储下来以便日后分析。 很多公司都忽略了这一点。 其实, 很多的数据都可以把它们按照原始格式保存下来, 包括交易数据, 用户行为, 日志文件, 用户生成的内容, 传感器的数据等等, 总之, 你能有的数据, 先存下来。 将来总是有用的。
2) 找一个数据科学家: 如果你是个小公司, 那么可能需要找一个数据科学家加入, 或者团队中有一个人需要成为数据科学家。 如果你管理一个大公司, 那么你可能需要一个团队的数据科学家。 数据科学家可以从内部培养。 一个好的商业分析师或者任何具有很强商业智能或者数据库背景的人都可能成为数据科学家。 你需要给数据科学家配备合适的工具, 并让他能够接触公司的不同数据, 以便他能够进行数据分析, 数据挖掘, 商业智能分析以及数据产品化的工作。 一个好的数据科学家, 能够帮助你提高效率, 并且帮助你更好的利用公司内部产生的各种数据。
3) 数据产品化: 对任何拥有特有数据的公司, 都应该考虑把这些数据产品化。 其实, 任何具有桌面, 移动, 网络或者服务器应用的公司, 都有自己的独特数据。 那些广告和零售行业的公司, 已经通过数据化产品增加了数十亿美元的收入了。
举个例子, 如果你是个B2B的软件即服务公司, 为你的客户提住自助报告的服务就是一个数据产品化的最简单的例子。 如果你是个电子商务网站, 利用数据为用户提供推荐则能够增加你的收入, 如果你有一个移动应用, 那么考虑如何让你的应用更加智能将会带来更好的用户体验和收入。 有个数据科学家来考虑如何数据产品化是第一步, 最终, 企业还是需要投入资源真正实施。
4) 以数据为导向的领导: 大数据不是仅仅只是关于数据, 它更多的是如何利用数据推动工作流程, 优化产品功能。 这一切就需要企业的管理者用一个数据导向的方式来领导企业, 推动企业的大数据化。 21世纪是大数据的世纪。 如果企业不能在以数据为导向的大趋势下顺利转型, 就很可能会被竞争者击败。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18