
大数据与深度学习是一种蛮力
Facebook去年底挖来了一个机器学习大神Vladimir Vapnik,他是统计学习理论和支持向量机的主要发明者。Vladimir Vapnik被称为统计学习理论之父,他出生于俄罗斯,1990年底移居美国,在美国贝尔实验室一直工作到2002年,之后加入了普林斯顿的NEC实验室机器学习研究组,同时任哥伦比亚大学特聘教授。2014年,Vladimir Vapnik加入Facebook人工智能实验室。
Vladimir Vapnik
近日,Vladimir在俄罗斯最大的搜索引擎公司Yandex的大会上发表了讲话,重点讨论了深度学习是否以蛮力取胜。来自加利福尼亚大学圣地亚哥分校的Zachary Chase Lipton博士详细记录了会议内容,并整理成了文章:
上周,我来到柏林参加机器学习展望和应用大会。这个大会由Yandex举办,主要谈了Deep Learning和Intelligent Learning两个问题,它们经常作为对比的概念出现。
虽然我自己也是演讲者之一,但是整个会议的高潮部分,还是关于深度学习的方法论,其中经验主义和数学推理中的矛盾部分。
第一条是关于深度学习,讨论的是背后的数学支撑,以及未来的方向。问题包括了模型的可解释性和医疗领域的应用。到了周三晚上,Vladimir Vapnik也参与了讨论,说的是知识如何在不同的个体之间传递。Vladimir的哲学观横跨了机器学习、数学和智能的源头,并且挑战了深度学习的方法论,这很有争议。
其实在今年夏天,我就写文章说机器学习的成功是大数据时代经验主义的胜利。在里面我强调说,过度去拟合数据,虽然能在真实数据中得到检验,但里面会有很大风险,至少比基于数学推理建立的系统风险大得多。在这次会议中,我听到了Vladimir在这方面的观点。
为了避免混淆视听,我得强调:我是一个深度学习的实践者。我个人并不否认深度学习,而且对它的先行者和火炬手充满尊敬。但我也同样相信,我们应该对深度学习的可能性抱有开放性的态度:
即会有一些数学模型,能够更好的指明未来发展方向,开启新的方法论。
很显然,当我们去咀嚼和消化这些观点的时候,能够得到很大的价值。
大数据与深度学习是一种蛮力?
尽管Vapnik当场说了很多观点,但是最核心的还是援引了爱因斯坦关于上帝的隐喻。简单的说,Vapnik假设了一个理论:想法和直觉要么来自上帝,要么出自魔鬼。而区别在于,上帝是智慧的,而魔鬼往往不是。
在作为数学家和机器学习研究和践行者的生涯中,Vapnik得出了一个结论:魔鬼往往来自于蛮力(Brute Force)。进一步说,如果承认深度学习系统在解决问题时不可思议的表现,那么大数据和深度学习,都有某种蛮力的味道。
不过,我自己并不同意深度学习必须等同于机器蛮力。我们如今也能看到对于大数据的观点争论,其中Vapnik和Nathan Intrator教授就说:小孩不需要几亿的标签样本以完成学习。虽然有大量带有标签的数据时,学习会成为一件比较容易的事,但如果依赖这样的方法,我们就错失了自然界中关于学习的基本原理。
也许,真正的学习只需要数百样本,而我们现在却只有非常大的数据量才能完成学习。如果我们不去探寻学习的本质,那就是在屈从于懒惰。
我们现在的深度学习并非科学。确切的说,机器学习和核心任务是理解计算本身,而现在的方法和它有所背离。这就好比任务是制造小提琴,而我们扮演的角色不过是小提琴演奏者,虽然也能创作美妙的音乐,也有演奏的直觉,但我们并不知道小提琴如何创造出音乐。
进一步说,很多深度学习实践者,他们对数据和工程有很好的感觉,但其实不知道这里头是怎么回事。所以在目前的深度学习方法中,参数的调节方法依然是一门“艺术”,而非“工艺”。
在算法和模型上,我们是否能发明所有东西?
Vapnik认为,在机器学习的算法和模型上,我们并不能发明所有东西。他坚持说,他自己并没有如此的聪明才智,以完成这些算法模型的发明。(这似乎也在暗示,其他人也没有那么聪明,去发明这些玩意)
按照Vapnik的意思,我们在机器学习上发明的东西是微不足道的。真正重要的东西,来自于我们对数学本质的理解。就深度学习来说,模型经常被发明出来、品牌化并申请专利,但这些相比于真正由数学驱动的机器学习,就显得很一般了。
关于深度学习的反思,来自纽约州立大学的顾险峰教授也有很多理解。顾险峰认为,深度学习方法深刻地转变了学术研究的范式。以前学者们所采用的观察现象,提炼规律,数学建模,模拟解析,实验检验,修正模型的研究套路被彻底颠覆,被数据科学的方法所取代:收集数据,训练网络,实验检验,加强训练。
在深度学习新方法下,严格的数学推理缺失了。比如说地图四色定理的证明,数学家将平面图的构型分成1936种,然后用计算机逐一验证。当然在足够的算力下,这可以证明地图四色定理。但是在这个过程中,没有新颖概念提出,换言之,机械蛮力代替了几何直觉。
而在数学历史上,对于一个著名猜想的证明和解答,答案本身也许并不重要,在寻找证明的过程中所凝练的概念,提出的方法,发展的理论才是真正目的所在。机械定理证明验证了命题的真伪,但是无法明确地提出新的概念和方法,实质上背离了数学的真正目的。
所以说,这是一种“相关性”而非“因果性”的科学。历史上,人类积累科学知识,在初期总是得到“经验公式”,但是最终还是寻求更为深刻本质的理解。例如从炼丹术到化学、量子力学的发展历程。
人类智能最为独特之处也在于数学推理,特别是机械定理证明,对于这一点,机器学习方法是无能为力的。当人的数学推理缺失的时候,仅仅依靠机器蛮力,就会遇到很大制约。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10