
网页数据分析 vs 移动数据分析:有何不同
一篇Web Analytics vs. Mobile Analytics: What’s the Difference?的文章,在我evernote里躺了几个月,最近几天刚好项目节奏不太忙,回顾了下我evernote里的很多待读文章,顺便也边读边翻译了下以便加深学习效果。
但是实际上翻译到一半我就有点后悔了,翻译实在不是一件轻松的事情,有些段落自己读起来觉得挺懂的,但是若要翻译成通顺的人类能够读懂的句子着实不容易,更不要说雅、达的终极要求了。但是还是强迫自己完成了“处女翻”,对于某些自己也无法接受的蹩脚的翻译,我保留了原文,希望朋友们能够帮忙指导。
注:
1. 下文中当提到App时,作者有时叫做App,有时又叫做mobile apps,有时又叫成mobile application, 在翻译时,我有时保留原文App,有时翻译成移动应用,有时又叫做移动应用程序,后来干脆简化之,一律称为App。
2. 文中使用了大量的术语,比如SDK, JavaScript,Cookie , 这些术语也经常出现,就不再进行转译了。如果对术语本身有问题的,可以用google百度一下。
人们日益依赖于移动设备通过移动浏览器以及app与企业进行交互。一份最近的研究表明目前来自移动设备的流量占据了互联网流量的15%。在2012年12月,平板设备的销量首次超越了pc电脑以及笔记本。可预期的是,在2013年年底时,每周将会有接近20亿的app被下载。
如果你现在还不够重视来自你的来自移动设备的流量,你的前景堪忧啊。如果你现在是移动数据分析的新手或者刚刚入门,了解下传统网页数据分析与新兴的移动领域的数据分析之间的区别,将对你非常有帮助。
移动数据分析一般被分成移动网页分析以及移动app分析。移动网页是指人们通过他们的智能手机或平板上的移动浏览器来访问在线的网页内容。很多公司会为这类用户提供指向一个专门为移动设备定制的站点(比较典型的是一个类似于m.example.com的子域名),或者,使用响应式设计(responsive design )让目前的网页内容在不同的设备和电脑的分辨率上实现自适应。当某些企业认识到无论他们的移动网页或主站都无法很好地服务平板用户时,他们也在开始提供平板专用的站点
刚开始时,很多智能手机不支持javaScript或者cookies. 但当前大多数流行的移动设备已经对此提供支持了。所以本质上,移动网页测量网页表现的页面打点方式与传统网页是类似的——只有几点注意事项。
虽然移动网站主要依赖于JavaScript页面打点方式进行数据收集,App跟踪使用一个基于不同客户端的方法,更有利于捕捉本机应用程序的活动。网站分析服务提供商面向不同的移动平台,如iOS, Android, Windows, and Blackberry开发了软件开发工具包(SDK))。分析sdk提供一个有预先写好代码的程序包,开发者可以将这个包集成到自己的应用中。此sdk能够采集到应用相关的维度和度量。
该软件开发工具包(SDK)有助于简化测量过程,因为开发人员并不需要编写自己的跟踪代码。例如,为iOS平台开发的数据统计SDK将提供使用Objective C编写的代码以便使用到iPhone和iPad应用中。一旦app应用被集成并执行跟踪代码,当连接移动网络时,它将能够即时发送数据到数据采集服务器上。
除了使用SDK进行数据统计代码的集成外,移动app的监测也与mobile web及网站有着以下的不同:
heidi注:通常,数据会先存储在应用的内存区域,但是因为内存区域是有限容量的,一般只会限定4-5k的空间,超过这个大小,数据会被传输到每个应用的存储区,进行离线存储。但是若用户很长时间不联网,这些数据不会无休止地进行增加,否则就占用了太多的存储空间。这种情况下,移动统计工具一般会制定一些策略,比如按数据的优先级或时间顺序进行历史数据的删除。存储区容量占用的大小以及删除策略依赖于每个工具的自定义。
这个表格简单总结了网站分析以及两种移动分析领域的异同。
除了这些关键的不同,移动应用分析从网站分析上继承了广为人知的测量实践。网站分析和移动分析虽然不是亲兄妹,也是关系非常亲近的表兄妹。
例如,对于用户参与度的衡量对于移动应用分析来说被特别强调——而在网页分析领域也是如此。当测量移动应用的效果时,用户下载应用只是第一步。企业想要知道他们的应用是如何吸引人,以及用户是否在定期使用。基于事件的跟踪可以让他们洞察用户与应用的不同功能如何交互。类似的,监测应用内的转化漏斗体现出来每个应用在驱动特定产出目标上效果如何。
广告活动跟踪是网站分析的另一支柱,在移动应用分析方面,它也已经浮出水面。举个例子,活动可以与Google Play 应用商店(安卓应用)绑定,然后你可以明白哪场活动和流量来源带来不错的应用下载(注意:iTunes商店目前不支持广告活动相关跟踪。)
只要你注意到了这些细微差异,移动分析代表了数字分析一个令人兴奋的,新的前沿。最后,对于大多数分析师来讲,跨渠道分析(App, 移动网页以及网页)终将到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09