分析师必备的用数据讲故事的五个步骤
在数字时代初期,数据只是数学家与科学家们讨论的话题。而如今,不管任何领域,任何人,都逃脱不了对数据的讨论和研究。不光我们经常使用的在线服务依赖数据,我们本身也是产生我们生活各方面信息源源不断的数据来源。
无论是人体数据——由于可穿戴设备的兴起——我们在家的能耗,或个人财务相关的数据:我们都正产生着大量数据,而当前我们需找到方法去了解它对我们的意义。
个性化数据在企业间兴起一股收集客户信息并寻求价值带给客户的热浪。对设计师的挑战在于,如何找到方法以降低大量数据造成的复杂性,并赋予数据一个易于人类辨识的原型。
数据皆人人可用之。它向用户提供了有意义和易理解的切实可行方式。这就是设计与众不同之处的能量所在:通过可视化帮助人们在纷繁的数据世界中寻找方向,从而改进人们的生活。
数据可视化从200多年前基本饼图发明时的形成至今已走过漫长的历程。如今,由于数据大潮的到来和人们关于数据使用的讨论,一种新的设计语言正在兴起,它可以优美地将大数据中的繁杂简化成既美观又富有意义的可视化图形。
因此不管你是要将健康福祉、购物习惯还是在社论中将数据表示成何种形状,奥菲尤尔小组总结出以下在面对数据可视化挑战时应遵循的五条核心原则。
确保了解你工作的数据。这是理解数据至关重要的第一步。你需要对宏观的全局有所理解:为什么收集这些数据?公司对于这些数据赋予什么样的价值?用户是谁?如何能让数据作用最大化?深入理解这些问题,能为创造出既有意义又人性化的可视化信息,打下重要的基础。
好的数据可视化不仅仅是一张美丽的图片,它还能讲述一个任何人都能明白的故事。因此,至关重要的是,你首先需明确你想讲的故事,然后将数据作为一种润色故事的方式。
例如,我们最近帮助瑞典移动运营商“3”公司重新设计了之前经常让用户混淆的月度手机账单,使其以用户为中心便于用户使用。3公司希望设计出更为有效易用的话单,而不是继续呈现给用户难懂的一串号码。
好的数据可视化讲了一个大家都能看懂的故事。
我们工作的成果是一个“我的3”的APP应用,能让用户实时查看套餐情况,以知悉套餐余量。通过数据可视化,我们设计了漂亮新颖的交互方式让用户查看数据情况。同时也很好地展示了3公司的客户关系。
确保你使用数据是用于引导而非支配整个体验。用户在理解与学习并形成自己体验的过程中,数据应该扮演幕后角色。值得探索的是,如何在可视化数据中融入你的见解,使用户灵活的解读数据,对用户来说极具意义。毕竟,愉悦的体验才能使用户记住并反复使用。
数据可视化是用来告知用户,而非让用户接收不需要的过载信息。作用一名设计者,你的角色就是专注简单,将复杂或者零散的信息变得切实可行,易于理解,极具意义和更人性化的信息。记住,越简单,用户才能越明白。
试试在可视化中键入当前行为与你的理解。会让你的设计被广泛的用户群体接受。饼图被人们广泛使用的原因在于:人们理解它表达的含义。这是一种天生优雅的可视化设计,因它有更大的影响力,且能使人们一看即懂。
一种设计驱动的方法
好的数据可视化不仅仅是设计上的杰作,也是帮助人们去解读之前无法触及的内容的一种极具价值的工具,并使这些内容赋有意义和指导性。随着越来越多的公司开始意识到数据的潜在能量,在将一些不清晰的事变成能帮助人们的事物面前,设计将发挥更大的作用。其关键就在于采用用户第一,专注简单的设计驱动方法,创造永不停息的愉悦体验。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21