大数据初创企业会遇到的五个问题
近几年,数据逐渐成为驱动业务的主要推动力。 更重要的是,大数据是可以帮助企业改善策略,提高运营效率和加速增长。
75% 的龙头企业说,他们已经或计划在未来几年在大数据基础设施方面布局。大量的新的和令人兴奋的大数据初创公司出现来满足企业客户日益增长的需求。
虽然大数据吸引力巨大,但是考虑到66% 的创业公司一般会在12个月失败,大数据初创公司们仍然面临着很多挑战。
挑战一 缺乏人才
大数据市场在不断增长,60%的领导者认为他们今年在大数据运营上会花费更多,只有5%预测预算会减少,最大的问题在于,这种增长将超过其实现它所需的人才和规模应用。
据麦肯锡的报告称,美国的大数据人才需求在2018年将达到 170万,大约在同一时间,美国数据市场价值将达到 415亿美元。随着行业的发展,人才技能差距将拉大。没有简单的解决方案,是唯一真正的修复是随着时间的推移,人才自然会增加以满足市场需求。
(这里还有一点讽刺,因为许多大数据初创企业试图通过自己的软件来解决市场上人才缺乏的问题,但他们同样面临招不到人。)
挑战二 人才成本高
71% 企业和IT组织认为自己在利用数据方面刚达到平均水平或滞后。显然需要提高整体人才能力和教育现有的劳动力。目前在员工的培训上,为了跟上新开发产品需要大量成本。
这样的培训运营费用在2013年全球达到1300亿,考虑到数据业务的快节奏的性质和随后的需要更多的人员和持续培训,这些成本只会持续上升。
挑战三 解决理想与现实的冲突
在最近《华尔街日报》上 一篇有关Hadoop 的文章上黛博拉·盖奇说,:一些评论把大数据捧地过于高了,对大数据的”炒作”使许多组织盲目的为采用而采用:他们急切地拥抱工具,但往往不关注他们的需求,只是因为这些工具似乎是最受欢迎的(Hadoop是一个例子)。
进一步复杂化的是,大数据平台本质上是厚数据。这使得供应商很难去表达它的功能和优点,甚至更难让客户们去理解。这就是为什么, 据Gartner 说,到2017年,60%的大数据项目将无法超越试点和实验,并将被放弃。 让大数据项目更加落地是未来的重点。
挑战四 融资障碍
大数据在风投界获得了极大的关注和惊人的资金, Hortonworks和 Dataminr的 融资近1亿美元就是很好的证明。 但在许多方面,争夺现金变得不利于新公司。
由于行业的发展,风投们会更亲睐具有挑战性的企业家,很多公司喜欢Palantir,MongoDB和Mu Sigma (至少有2亿美元投资)。 因为资金增加了,在某种程度上我们可以预期投资者变得更加初步承诺投资,而不是投资于更成熟的新锐品牌。
挑战五 更残酷的竞争
全球大数据预计在2015年产值达到 1250亿美元 ,创业并不孤单; 他们面临SAP微软和IBM这样的数十亿美元的大公司的残酷竞争。
这些巨人可以释放功能更新产品,收购同类公司。他们的资金是无限的,而初创企业必须更加精细化他们的产品只是为了维持他们的现金消耗速率。
实际上,这是一件好事。初创公司成功的最佳方式和关注一个点和把它做好,大公司总是在寻找方法来获得竞争优势。 如果你在存储、分析等方面有极大的优势,被收购也是个不错的选择。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28