农业从完全依靠人工完成,到半机械化农业,再到大规模机械化农业,生产力得到了飞速提升。但随着人口压力不断提高,可用耕地不断减少,农业需要另一场变革,来满足人类的粮食生产需求。传统的农业生产方式应向数据驱动的智慧化生产方式转变。而云计算、大数据、互联网等科学技术则将是这场变革的主要推动力。
各国政府、社会组织、企业都意识到大数据这场旋风所带来的机遇,开始发力推动大数据在农业领域的跨界应用。
一、各国政府积极推动农业数据开放
http://www.data.gov/网站就是奥巴马实现“开放政府”承诺的一部分。它的目的是使得私人领域的开发者,能够利用那些政府采集但未经梳理的各类信息,开发应用来提供公共服务或者进行盈利。这样,很多的公司就可以利用http://www.data.gov/上提供的气象信息来提供服务。还有一些公司则基于该网站上的地理位置信息, 提供基于位置的服务来盈利。美国农业部还宣布在http://www.data.gov/上建立一个门户网站,该网站能链接到348个农业数据集。除此之外,在今年5月份召开的一次关于农业数据开放问题的国际论坛上,八国集团(G8)领导人集体讨论出了取消数据限制的最佳途径,而且这些数据也很容易被人和机器所分析,并且一些国家公布了关于农业数据库公开的政策方案。其中加拿大、印度、美国,正在推动建设一个开放性的数据共享平台。
二、企业瞄准农业大数据机遇
1.天气意外保险公司(The Climate Corporation)
The Climate Corporation为农业种植者提供名为Total Weather Insurance (TWI)、涵盖全年各季节的天气保险项目。本项目利用公司特有的数据采集与分析平台,每天从250万个采集点获取天气数据,并结合大量的天气模拟、海量的植物根部构造和土质分析等信息对意外天气风险做出综合判断,以向农民提供农作物保险。公司声称该保险的特点是:当损失发生并需要赔付时,只依据天气数据库,而不需要繁琐的纸面工作和恼人的等待。 该公司总部位于美国加州,已经运营6年,从Google Ventures、Founders Fund等多家公司获得超过5000万美元的风险投资。
2.农场云端管理服务商Farmeron
Farmeron旨在为全世界的农民提供类似于Google Analytics的数据跟踪和分析服务。农民可在其网站上利用这款软件,记录和跟踪自己饲养畜牧的情况(饲料库存、消耗和花费,畜牧的出生、死亡、产奶等信息,还有农场的收支信息)。其可贵之处在于:Farmeron 帮着农场主将支离破碎的农业生产记录整理到一起,用先进的分析工具和报告有针对性地监测分析农场及生产状况,有利于农场主科学地制定农业生产计划。 Farmeron创建于克罗地亚,自2011年11月成立至今,Farmeron已在14个国家建立农业管理平台,为450个农场提供商业监控服务。公司在本年度获得140万美元种子轮融资。
3.土壤抽样分析服务商Solum
Solum致力于提供精细化农业服务,目标是帮助农民提高产出、降低成本。其开发的软、硬件系统能够实现高效、精准的土壤抽样分析,以帮助种植者在正确的时间、正确的地点进行精确施肥。你既可以通过公司开发的No Wait Nitrate系统在田间地头进行分析,即时获取数据;也可以把土壤样本寄给该公司的实验室,让他们帮助你进行分析。 Solum成立于2009年,总部位于美国硅谷。继2012年获得Andreessen Horowitz 领投的1700万美元投资后,已累计融资近2000万美元。(文章来自:CDA 数据分析师培训官网)
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22