浅谈数据处理中的相关分析
大数据的发展经历了从因果分析到相关分析的转变。宏观上来讲,如果两个事务存在某种统计学意义上的依赖性就称两者具有相关性。这里我们就简单聊聊各种相关分析的方法。
我们经常会用到的比如计算两个商品的相似度,或计算两个用户之间的相似度,如下图所示,是基于商品的购买行为,来计算两个商品之间的相似程度。我们先基于此例来说明。这里每个商品可以表示成用户购买行为的特征向量,其中1表示此用户购买,0表示此用户未购买。
设商品a的特征向量为向量A, 商品b的特征向量为向量B,那么常用的计算相关性的方法有以下:
Jaccard相关是基于计算集合之间的相似度方法,而Cosine和Pearson都属于积差相关的范畴。通过简单对比,我们看得出A和B的Pearson相关系数就是向量A和B归一化后再计算Cosine相关系数的结果。
如果在某些情况下,我们不需要顾及计算向量中值的相对大小,那么还可以计算等级相关性系数,如Spearman等级相关和Kendall等级相关等。等级相关没有积差相关要求那样严格,相同的情况下,等级相关的精确度要低于积差相关。
如果我们想除去共同噪声的影响,可以选择偏相关分析的方法(在频域上叫偏相干)。其结果与先回归掉噪声再计算相关的结果是一样的。
如果我们的处理对象是时间序列,除了以上谈到的方法外,我们还可以度量频域上的相关性,如使用相干谱分析的方法,如小波相干等。即您可以得到不同时间点不同频率上的线性相关性系数,同时还可以平衡时间和空间上的分辨率。
如果有时间建议大家不妨多做些实验,而且要定期做,因为数据集的变化(稀疏度、噪声等因素)可能导致相似度指标效果的变化。比如对于一个电商平台的商品推荐系统,初期时可能使用方法x效果最好,当用户数逐渐增加,商品越来越丰富,可能方法y效果最好,直到系统越来越复杂,可能这时方法z是最好的了。所以建议定期做些离线试验来选择此时效果最好的方法。
我们常用的如Jaccard相关, Cosine相关,Pearson 相关都是属于线性相关的范畴,复杂的还有非线性相关的方法,如多谱分析,互信息等。但这些在我们电商的场景中很少用到。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20