大数据时代的三个思维变换
维克托·尔耶·舍恩伯格在《大数据时代:生活、工作与思维的大变革》中最具洞见之处在于,他明确指出,大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。这颠覆了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。
知名IT研究机构Gartner以它对专业IT市场的“魔力象限图”发布作为一种评价方式,在其二维矩阵里,横轴是前瞻的完整性,纵轴是执行力,如果用此分析方法来评价《大数据时代》这本书,它大概位于右下角靠近纵轴中间点的位置。
2012年,笔者看过的3本有关大数据的中文书,它们分别是《证析》、《大数据》和维克托·迈尔·舍恩伯格的《大数据时代》。与其他两本相比,舍恩伯格这本书的特点重在“Impact Analysis”的前瞻分析,在大数据时代的思维变迁方面有启发价值。也说是说,此书对于企业高管和CIO的价值更大,它基本没有太多讨论技术,而偏重于观念转移(Paradigm Shift)。
简单说来,这本书的价值可以用两个“三”、一个“一”来概括:第1个“三”是3个关于大数据的思维变换,重在大数据变革时代的价值与观念变化;第2个“三”是关于大数据影响商业变革的3个要素:即数据、技术与创新思维之间的互动;一个“一”是关于大数据泛化下的治理与隐私。
关于大数据本身的价值已无需赘述,此处重点讨论关于大数据的3个思维变化:1.不是随机样本,而是全体数据;2.不是精确性,而是混杂性,尤其是大数据的简单算法比小数据的复杂算法有效;3.不是因果关系,而是相互关系。
《大数据时代》一书提醒读者,大数据是全数据,至少维度要全,这带来了观察和分析事物的角度变化,尤其相对于传统IT系统数据,大数据强调了数据的外部性和实时性,这两个特性也使得“证析”提到的基于事实(Evidence)的分析成为可能,不过此书忽略了外部数据与企业内部数据结合的分析价值。比如,对于政府来说,分析大范围的公共卫生事件、传染病可以更快地利用大数据(比如微博)发现目前的情况,但具体要调度资源,还是需要结合“小数据”的精确决策。
第2点的核心观念关于大数据的简单算法来自谷歌的洞见,也来自于Hadoop(一个分布式系统基础架构,由Apache基金会开发)这类算法的核心理念。大数据的简单算法是一种统计学的逻辑,这个如同热力学的分析模式,热力学并不关心具体的分子运动,而是关心温度、体积、压强之间的宏观联系,关于这种理念的内在理解,建议读者从吴军的《数学之美》一书中获得,只有真正理解了大数据基于统计学的思维方式,才能理解它的独特优势和局限。这种方式可以解决以往技术无法解决的大范围、实时性和并行处理等问题,并带来新的洞见,它用概率说话,并不是和人就细节较真。这个来自互联网公司的观念是,希望先解决80%的趋势问题,然后慢慢精细化。
第3点,大数据关注“是什么”,而不是“为什么”,经常网购的人会更容易体会。很多电商网站的推荐引擎具备这种能力,它能够在顾客买书的时候,推荐顾客刚好喜欢的其他书籍,顾客可能不知道“为什么”,其实网站也不在乎“为什么”,(“为什么”可以由学术专家慢慢分析)。但是网站根据成千上万甚至上亿人的统计学分析,就可以发现“关联物”,或者说大数据更擅长通过统计分析人类所不能感知的关联,并建议人采取行动。
这个革命式的思维非同小可,以前“啤酒+尿布”的数据仓库故事需要数据整理、清洗转换和专家建模挖掘,其采购行为的关联性可能被Hadoop等算法轻易的发现。上述方式由于分析门槛低,已经成为一种常见的工具,并衍生大数据的云服务的商业模式,成为企业可以购买的“分析即服务”(Analytics as a Services),国内阿里系正致力于这种模式的建立。
第2部分关于大数据商业模式方面,最有价值的是关于大数据商业生态的分析,除了大家熟知的数据、技术,作者认为还有第3种基于思维的大数据公司,包括数据中间商等等,这对于国内过于关注技术本身的趋势是个很好的提醒。一个有趣的话题是,作者认为基于统计的数据科学家会逐步取代行业专家,因为大数据发现的新的真实联系,可能会颠覆传统行业专家,这个话题学术界可能很感兴趣。
一个耐人寻味的例子是,基于大数据统计分析的自然语言翻译几年前就胜过了基于语义理解的语言学家派别,书中提到的一个从事语言翻译的算法小组甚至开玩笑地说,“每次我们组走了一个语言专家,我们的翻译精确度就提高一些”。
第3部分是关于大数据成为乔治·奥威尔《一九八四》里的“老大哥”,即通过技术手段实现了无处不在的监控以后,隐私和滥用的问题最为让人担心。笔者认为这个话题过于公共,而且已有很多文章在讨论,并不是本书的特质,况且大数据的兴起是一个渐进的过程,各个行业的实用案例尚在兴起,行业内部应专注于行业创新,关于公共的话题的讨论还是留给学者、政府和未来。
西方作者有一类是理念的鼓吹者,最著名是《失控》的作者KK(凯文·凯利),此类被读者推崇为传教士的作者,喜欢推广颠覆式的观念,产生一种前世今生(Before/After)比较的震撼力。本书作者也是如此,如此颠覆,强力的大数据时代似乎正在到来,然而,此类作者也会被人指责为“管杀不管埋”——提出理念,不对具体的可行性负责。回到前文提到的Gartner的“魔力象限图”,渐进的执行力才是大数据这种趋势逐步在各个行业开花的关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31