
绝大多数的大数据营销都是在浪费时间
一个路人发现路灯下有一个醉汉正在寻找遗失的钱包。路人发现地上什么都没有,于是他问醉汉:“你的钱包掉到哪里了?”醉汉指着远处的街道说,“就在那里,但是我站在路灯下看的更清!”
我们经常在最容易达到的地方寻找答案,而不是去答案最有可能出现的地方寻找。随着市场营销逐渐由主观向客观转变,数据驱动的方法是不是更像上文所说的路灯?
即使是现在最先进的大数据方法,有没有可能在错误的数据上提出了错误的问题?
错在起点
当早期效益增长开始放缓,大多数公司倾向于进行数据分析。人们最常听到的就是:“让我们更好地利用现有的数据”,好像是预示着公司成熟转型的开始。其实在这个时候,公司效益高速增长期正式结束了。
最初想用大数据方法解决的经典问题是:“我们的最大客户群是谁?”或者“哪些产品最赚钱?”很快可以得出的答案是:这些问题与不同的地区、季节等许多因素有关。所以我们又要问:“商品X,Y,Z在区域A的销售情况与在区域B的情况相比怎么样?”接下来公司采用了倾向模型(PTR),用来进行购买可能性分析,交叉销售分析,客户流失分析,或欺诈行为分析等。为了估计不同渠道的广告投入,在竞争营销中人们优先考虑营销组合模型。
目前大数据营销的目的是向公司实时提供哪些人最有可能成为客户,他们通过哪些渠道而来,他们可能在什么样的时间以什么样的价格买什么产品。
过去的数据对于预测未来并不总是有用
海量数据和数据分析是否真的有意义?就像是路灯下的醉汉,我们是不是被引导到看起来最简单的地方去寻找问题—我们收集的数据都是客户过去的销售数据(这很容易做到),但是这对于理解未来销售模式和未来潜在客户有用处么?
通过分类、聚类或PTR模式分析出的潜在客户是被标准化的、生硬的模型。我们的客户都是人类,人类的选择是基于他们理性而又复杂的思维,而不是简单的求复合问题最优解。拿买一辆车来说,具有相同基因和家庭环境的兄弟,最后做出的消费选择也可能是不同的。如果那些最相似的人都会表现出不同的偏好,又怎能用陌生人的消费经历来预测我们的消费倾向?用成千上百个陌生人的消费数据生成的消费模型,又怎能为我们做出合理的消费建议?
没有一个消费者可以用具体的聚类或分类模型来进行全方位的界定。这是一个复杂的和迅速变化的世界,我们的这些分析模型对消费者的当前偏好和消费情况所知甚少。市场环境中的个体选择可以在瞬间改变,产品销售的变化也可以迫使消费者是选择现有可用的还是等待真正合适的产品出现。
促销和折扣是改变产品吸引力的一种方式,这种方式在刺激了另一种产品销售的同时,也可能会造成其他产品的滞销。每个人的个人财务情况也是各不相同的,每个人的每次购买决定也是瞬息万变的。这使得任何购买行为都难以预测。
转而研究“小数据”
我们要研究的“小数据”应该是不断变化的产品属性与价格。这些数据才是你的客户和你竞争对手的客户在做选择时真正用到的。客户都在尽可能的比较和评估产品及其提供的服务。这些最后都决定了商品在市场中的“影子定价”(是指基金管理人于每一计价日,采用市场利率和交易价格,对基金持有的计价对象进行重新评估)。
你要做的是最大化“支付意愿”,即潜在客户的“消费者剩余”(是指消费者消费一定数量的某种商品愿意支付的最高价格与这些商品的实际市场价格之间的差额)。然后,消费者会根据他们的偏好倾向于选择你还是你的竞争对手,这取决于你的产品能够提供什么样的属性或服务。
分析客户数据以减少错误的估计,并不能帮助你的客户解决他们的问题,反而会使客户的问题激增。多种多样的排列组合会加重客户的选择困难,而不是让他们更清楚该选择什么样的产品。如果你能够减少客户在选择产品上所付出的精力,客户自然会选择你。
客户需要最新的,可靠的,有效的和值得信赖的建议来帮助他们选择产品。这些体现了他们自己的个人喜好和预算,这两者才是最有用的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
全球第一!上交AI智能体炼成Kaggle特级大师登顶OpenAI MLE-bench 编辑:KingHZ 好困 【新智元导读】刚刚,由上海交通大学人 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24