什么叫对数据敏感?怎样做数据分析?
我做过近两年的电商运营,其中感触很深的一个点就是从数据的维度对目标做拆分。
天猫的双11刚刚过去,马云又创造了新的成绩,912亿。从去年的571亿到今年的912亿,马云怎么就敢说今年可以做900亿呢?在设定这个目标之前就少不了对目标的拆分。
900亿的成交,首先按照过往的类目占比,拆分到各个类目,每个类目承担多少销售指标,类目再按照过往的卖家成交额占比拆分到各个卖家,每个卖家承担多少销售指标。卖家再根据各自的日常店铺转化率反推需要多少流量,各类目再结合平台能提供的流量,就可以得到流量的缺口。接下来再按照各渠道获取流量的成本来计算,就可以得出双11平台需投入的营销经费数值。整个900亿的目标,通过这样的拆分,就变得明确可执行了。
无论做什么事情,想做成,都离不开对目标的拆解,任何抽象的事物都可以通过数学的方法来解决,把事情数据化会让事情更简单可执行,也更容易考核效果。
我刚开始接触电商接受业务培训,第一节课就只讲了一个公式。
成交额=买家数x客单价
如果你想提升成交额,要么提升买家数,要么提升客单价。我们可以盘点一下,我们见过这么多的促销手段,有哪个不是为了提升这两个数值的。满减、满送、买二送一,这是为了提升客单价的手段;秒杀,团购,这是为了提升买家数的手段(秒杀的核心在于集聚大量流量做关联销售)。
不仅仅如此,这个公式依据不同的业务场景还可以拆分成多种形式。
买家数 = 商详uv x 下单率 x 付款率
商详uv = 广告展现 x 广告转化率 = 搜索展现x搜索转化率 = 活动展现x活动点击率
于是,决定成交额的因素就变成了各个渠道的转化率、图片的点击率、产品的下单率、付款率,这样多的细节共同决定了最后的成交额。接下来针对这些细节分别去做优化,这个过程就叫依据数据做精细化运营。
仔细想想,你自己的业务又何尝不是一个公式呢?试着找到自己的公式,去拆分它,你也许会不少改进的方法。
互联网的模式下,无论做什么产品,根本目的都是为了变现,只要是变现,就涉及到了转化。而转化其实就是一个漏斗模型。
漏斗模型是运营数据里提到的最多的词了,在业务的链条里,每个环节的用户数是呈不断衰减的,运营要做的事,就是想尽一切的办法来提升漏斗中各环节的转化率。
比如一个电商的活动页,它的漏斗模型应该是这样的:
有了这么个漏斗,我就可以分析每个环节代表了什么,我怎样去改善:
1)pv/uv:页面访问深度,直接体现了这个页面是否吸引人,用户在这个页面是否产生点击的兴趣。
2)活动页—>详情页uv:页面上的内容是否吸引人,商品是否是用户喜欢的,需根据页面点击情况及时替换点击效果差的商品。
3)详情页uv—>下单人数:商品的转化率如何,是不是爆款,此处转化过低需替换高转化的商品。
4)下单人数—>付款人数:商品的付款率,如果低于正常值,需要卖家催单。
需要注意的是,漏斗模型是需要对比的,如果仅仅只有一个漏斗模型,那么就只是数据的陈列,如果要做分析的话,就一定要有对比,比如和往期的漏斗作对比,比如与平台的均值作对比,只有在对比过程中才会发现问题。
我们作为产品运营的同学,必须要熟悉我们产品中每一个关键数据,日均的uv是多少、转化率是多少,下载量是多少,这样在数据出现异常的时候才可以第一时间发现,熟悉产品数据,是对数据敏感的前提。
前面讲了一些理论层面的,最后给一个数据分析模板给大家,供参考。
1、首先你需要根据活动目标确定你的目标达成率,完成百分比,提升百分比。这是这次活动取得的成果,在一开始就写。如:
本次活动 uv 24w(20w,↑ 20%),uv价值 3.6(3,↑ 20%)
2、如果是发周报、月报之类的数据,接下来就应该是核心数据走势图
在这张图里,要对每个数据的拐点做分析,比如图中11月7日、8日两天的uv价值有明显提升,这个的原因,要找到并写在报告里。
3、接下来流量分析,主要为流量来源分布,各渠道流量转化率分析。流量涨了,要找到是哪个渠道带来的流量涨了,为什么涨了,分析这里的原因。流量的质量如何,哪个渠道的流量转化率高。这里需要两个饼图,一个是流量渠道占比,一个是渠道带来的转化占比。
从上面的两个饼图里,我们看到明显站内流量的转化率更高,而广点通带来的流量转化率偏低。另外,通过与往期的渠道来源占比作比较,我们可以看到当前流量构成上的变化。
3、转化率分析,也就是漏斗模型分析。前文提到了,漏斗模型需要对比的数据,所以在此处的分析,我们需要列两个漏斗模型。
对漏斗模型各环节转化的分析,这里主要和往期数据做对比,结合活动页面、流量、产品功能等多方面因素,尝试分析这里各环节转化率提升或者降低的原因。
4、模块点击分析
我们设计的产品页面,或者活动页面,我们需要知道这个页面的结构是否合理,用户的点击分布,这有助于我们改善。当我们尝试新的页面样式的时候,更应该对这里的模块点击做分析,可以验证我们的结构是否对数据带来了改善。
模块点击分析主要是从点击饼图,及其各模块转化率的角度来分析,点击饼图可以看到用户的需求,模块转化率则反应了各个模块内容是否满足用户的需求,如果模块转化率较低,则需要考虑这个模块的内容是否优质,甚至这个模块是否需要改变样式。
5、改进及优化
每次的活动总是有做的好的地方和做的不好的地方,我们数据分析的目的就是为了积累经验,沉淀方法论,在每一篇数据报告的结尾,我们需要对这一次活动做一个总结,比如尝试了一个新的玩法,效果如何,尝试了一个新的页面样式,点击率是否有提升,等等。把经验应用于之后的活动策划当中。
写在最后,想说一点,数据不是万能的。
我们常做的数据分析,是建立在海量数据的情况下,但往往在初创公司,数据系统还不完善,数据量不够的情况下,数据只能作为参考,过分相信数据往往会导致做出错误的判断。
数据有很多指标,统计维度又有很多种,如果深挖下去,会耗费大量的精力,但却不一定会有成效,所以找出最关键的几个数据指标,对其最合理地分析,这点很重要。
今天就说这么多啦。做数据分析,重点不在数据,而在分析,对数据敏感,就是能清楚数据异常背后的原因,这需要经验,也需要你的思考和执行力。希望你可以成为一个对数据敏感的互联网人。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14