最新大数据产业地图及解读
从我第一次尝试为繁荣发展的大数据生态系统绘制一张信息图已经过去了两年, 而这期间大数据行业发生了很多巨大的变化。我早就该对这张图做一个更新,现在终于完成了。
从VC的角度,我想谈谈对这张图以及大数据行业的一些想法:
越来越拥挤:创业者们蜂拥至这个行业, VC们将大笔的资金投资到看起来有机会成功的创业公司,其结果是,这个行业正变得越来越拥挤。一些类别如数据库(不管是NoSQL还是NewSQL)和社交媒体数据分析正趋于成熟,且开始出现并购或者淘汰出局(Twitter对BlueFin和GNIP的收购可能意味着在社交媒体数据分析领域这种趋势早已经开始了)。
对于后来者来说,虽然空间依然存在,但看起来早期的大笔风投资金都下注在基础设施(infrastructure)和分析(analytics)领域,导致成功的标准变得越来越高。不过, 这并不意味着VC的资金会停止流入这些领域。
对于一些领域,公司的数量之多显然已经达到了一张地图所能容纳的上限。我相信还有一些不错的公司我们没能纳入进来,也许是我们没有发现,也许是因为地方不够了, 我在此表示非常抱歉,同时我也希望大家在评论里对于应当纳入那些公司提出反馈和意见。
尚处在早期阶段: 总体而言,这个市场还处在发展的早期阶段。 过去几年,一些被看好的公司失败了(如Drawn to Scale),一些公司的创业者提前退出了(例如Precog、Prior Knowledge、Lucky Sort、Rapleaf、Nodeable、Karmasphere等 ),还有一些的结局稍好(例如Infochimps、Causata、Streambase、ParAccel、Aspera、GNIP、BlueFin labs、BlueKai)。
与此同时,一些公司看起来正越做越大,并获得大笔惊人的风投注资(比如MongoDB已经融资超过2.3亿美元, Palantir融资近9亿美元, Cloudera近10亿美元。一些大公司正积极出击进行并购(Oracle收购BlueKai, IBM收购Cloudant),但是总体而言,多数公司离成功实现IPO和投资者功成身退还差的很远(虽然Splunk和Tableau做到了)。在很多类别,创业公司和大公司互相竞争,但并没有出现市场领导者。
市场宣传遭遇现实:在经历这些年狂轰滥炸的市场宣传之后,大数据还是焦点么?未来几年,也许大数据不再是媒体的热门,但对于大数据市场而言却是至关重要的,因为企业将要开始把大数据项目从试验转而全面的部署实施。
虽然这意味着一些大数据提供商的利润会迅猛增长,但同时这些项目也将成为大数据是否能带来它所宣传的价值的一块试金石。与此同时,随着“物联网”行业的迅速崛起,数据将会如潮水般加速增长,进一步推高市场对大数据技术的需求。
基础设施:Hadoop似乎已经奠定了其作为整个大数据生态系统的关键部分,一些竞争者依然虽在,这一领域也许会进一步发展和整合。 Sprak是另一个的基于Hadoop分布式文件系统(HDFS)的开源框架,它试图填补Hadoop的弱项,提供更快的的数据分析和良好的编程接口,目前正吸引大量关注(一些迹象显示它做的还不错)。
一些主题(比如实时数据处理)依然是重中之重,同时新的主题也在不断涌现(比如新一代处理、变换、清洗数据的工具,包括Trifacta、Paxata 和 DataTamer)。企业数据是否会真正的放到云里(公共云或私有云),如果是,还有多久才发生,将是另一个大的话题。很多人认为财富500公司在接下来的几年来会继续把数据(以及处理数据的软件)放在机房里。一批云服务 Hadoop的创业公司则认为长期来看,所有的数据最终都会放到云中。
分析工具:从创业公司和VC投资的数量来看,这一领域最为活跃。从excel表格式的用户界面,到时间轴动画和3D动画,创业公司提供各种各样的数据分析工具和用户界面,而不同的客户也确实有不同的需求,所以这一领域大概依然有足够的发展空间。
推广产品的策略也不尽相同 — 有些创业公司更针对于数据科学家,这群人目前不多但增长迅速。另一些则正好相反,他们销售自动化的解决方案给一般商业用户,完全忽略数据科学家的存在。
大数据应用: 正如之前预测的,大数据缓慢但的确朝着应用层面发展。这张图列出了一些令人兴奋的创业公司——他们本质上都是基于大数据技术和工具(当然我们无法把所有的相关公司都在这里列出来)。一些公司提供横向应用——如基于大数据的营销系统,客户关系管理系统和欺诈甄别解决方案。
金融业和广告科技业一直是大数据推广的领导者和最早的拥趸,甚至早于大数据被称作大数据。慢慢的,大数据推广到各行各业,如医疗行业和生化行业(特别是基因研究领域)和教育行业。现在才刚刚开始。
特别感谢我在FirstMark的同事Sutian Dong,她为这张图做了很多的基础工作。以及我在彭博Beta的前同事Shivon Zilis,他对这张图的之前版本做了巨大的贡献。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19