热线电话:13121318867

登录
首页职业发展大数据分析在商务智能中的最佳与最差实践
大数据分析在商务智能中的最佳与最差实践
2015-12-02
收藏

大数据分析在商务智能中的最佳与最差实践

大数据分析最佳实践

大数据不仅是一个流行话题,更是企业中实实在在存在的需求。许多企业开始着手于大数据分析项目,但在此之前,我们需要一个良好的部署方案以确保最终的结果能够为业务服务。选择合适的技术是规划的第一部分,当企业选择了数据库软件、分析工具以及相关的技术架构之后,我们就可以进行下一步并开发一个真正成功的大数据平台。

只选择你所需要的数据

大数据分析项目中我们会遇到海量的数据集。但是海量数据并不代表一个企业的所有数据,也不是相关数据源中的所有信息都需要我们来进行分析。企业需要确定哪些数据具有战略价值,能够为分析服务。在规划阶段,把注意力集中在业务目标之上,将有助于企业对分析进行精准的定位,在此基础之上我们可以也应该了解哪些数据能够满足这些业务目标。

构建高效的业务角色然后处理相应的复杂度

积极应对复杂性是大数据分析项目成功的关键之一。为了能够最终得到正确的分析结果,我们需要让所有相关的业务数据所有者参与到流程当中,以确保提前制定必要的业务角色。一旦业务角色制定完毕,技术人员就可以评估相应的复杂度,以及所需要做的工作。这就指向了部署的下一个阶段。

以协同的方式将业务角色转化为相关的分析

建立业务角色对于大数据分析应用来说只是第一步,接下来IT或者分析专家需要创建相应的算法。但这部分工作并不应该是独立的,起初的查询越准确,那么所需要的开发工作就越少。许多项目都需要持续反复的开发工作,究其原因还是因为项目执行人员和业务部门沟通出现了问题。因此,在项目开发的进程中,我们需要双发协同并及时沟通,以便保障项目的顺利进行。

确定一个维护计划

除了项目之前的一些开发工作,我们还需要不间断地注意变更。在业务需求变化之上的日常查询维护固然重要,但毕竟它只是整个分析项目管理的一部分。随着数据集的不断增长以及业务用户对分析过程的不断熟悉,他们对系统的要求也会相应地增加。分析团队必须能够及时地满足额外的要求。

牢记用户需求,不是部分用户,而是所有用户

随着自助式BI工具的流行,在大数据分析项目中把终端用户放到考虑范畴之内就显得并不奇怪了。当然,能够应对不同数据类型的IT架构非常重要,但是系统的可操作性和交互性同样是我们需要考虑的问题。这需要我们把不同类型用户的反馈考虑在内,从高管层到操作工,从分析师到统计员都需要能够访问到大数据分析应用,不管是用何种方式。

大数据要从小开始

分析大数据集也一样要从小机会开始,然后再使用它们作为起点。随着公司不断地扩大分析的数据源和信息类型,以及开始创建最重要的分析模型,帮助他们发现结构化和非结构化数据的模式和相关性,他们需要注意那些对于预期业务目标而言最重要的结果。

不要忘记最终目标仍是大数据

在确定大数据分析实施计划时,公司一定要重视规模因素。您一定要考虑到变化——从现在开始的半年内,您需要处理多少数据,您需要增加多少服务器,是否由软件来完成这些任务。人们并没有考虑到数据增长的程度,以及觖决方案部署到生产环境后的流行程度。

大数据分析最差实践

当BI供应商满面笑容地告诉你他们的客户已经成功部署大数据分析项目时,他们一定不会告诉你还有那么多失败的案例。大数据分析项目过程艰难甚至最终失败是有一些潜在原因的。俗话说失败乃成功之母,比起成功的经验,一些失败的教训也许对你更加有利。本部分是一些大数据分析项目的最差实践,你需要了解如何避免它们。

盲目跟风

这种观点重复犯了经典的错误,组织开发他们的第一套数据仓库或者BI系统时经常会犯这样的错误。太多时候,IT和BI以及分析项目管理者被技术炒作所迷惑,忘记了他们首要任务的商业价值;数据分析技术仅仅是一个用来产生商业价值的工具。大数据分析的支持者们不应该盲目地采用产品,他们首先需要判断该技术所服务的业务目标。

误认为软件可以回答所有问题

构建一个分析系统,尤其是涉及大数据的分析系统是非常复杂的,也是资源密集的。因此,许多组织希望他们部署的软件将成为银弹,神奇地实现一切。当然,人们应该明白希望总是比现实更美好。软件确实会带来帮助,有时帮助还会很大。但是大数据分析的效果取决于被分析的数据和使用工具的分析技能。

思路太过僵硬

通常,人们总是不断尝试他们过去的做法,即便当他们面对不同的场景时也会这样。在大数据情况下,一些组织会想当然地认为所谓“大”只是意味着更多的交易和更大的数据量。这种观点可能是正确的,但是许多大数据分析策略会涉及非结构化和半结构化信息,需要以完全不同于企业应用程序和数据仓库中结构化数据的方式管理和分析。

忘记过去所有的教训

有时企业会走向另一个极端,认为大数据中的一切都是完全不同的,他们必须从头开始。对于大数据分析项目的成功,这种错误可能甚至比认为没有不同更要命。只是因为你希望分析的数据结构不同,并不意味着我们已有的数据管理基本原则需要重写。

没有必备的业务和分析专业知识

误认为该技术可以实现一切的必然结果就是,相信所有你需要的只是让IT员工实施大数据分析软件。首先,与上述产生商业价值主题相符合,有效的大数据分析项目必须在系统设计阶段以及持续运营过程中结合广泛的业务和行业知识。其次,许多组织低估了他们需要分析技能的程度。

把项目当作科学实验

太多时候,公司衡量大数据分析项目的成功仅仅是通过数据收集和分析来进行。而事实上,收集和分析数据只是开始。如果结合了业务流程,并促使业务经理们和用户们为改善组织绩效和业绩而付诸行动之后,分析才能产生商业价值。要获得真正的效率,就需要把分析项目纳入反馈闭环,以便交流分析结果,然后基于经营业绩提炼分析模型。

承诺太多,想做的太多


许多大数据分析项目陷入了一个大误区:支持者过度宣扬他们部署的系统会有多么快,业务会获得多么重大的益处。过度的承诺和交付的不足必然导致业务与技术的分离,这样组织一般会很长时间都推迟特定技术的选用——即便其它许多公司已经使用该技术获得了成功。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询