大数据如何作用于”舆情“
随着互联网技术的迅速发展,信息量大、类型繁多、价值密度低、速度快、时效高的大数据吸引了越来越多的关注目光,大数据带来的信息风暴正在改变我们的生活、工作和思维。毋庸讳言,舆情服务在进行行业规范和整合的同时,正面临着大数据的挑战。
大数据时代,对信息的“加工”是基础。据 互联网专家介绍,大数据体量巨大,非结构化数据的超大规模和增长分别占总数据量的80%至90%,比结构化数据增长快10到50倍。从舆情产品服务的角度 看,浓缩海量信息,抵抗“数据爆炸”已成舆情工作基本要求。故此,掌握数据抓取能力与舆情解读能力,通过“加工”实现数据的“增值”,将是未来舆情分析的 必备技能。目前,国内很多舆情服务机构甚至没有专门的数据管理、分析部门和专业分析团队,分析人员对信息的鉴别力、萃取力、掌控力仍有待提高。在信息广度 上大作文章的同时,未来需要一批有较高学习能力、分析能力、知识水平的数据从业人员占据舆情服务重镇。
大数据时代,对数据的解释是关键。目 前,数据的可获得度已经空前提高,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,实现真正的大数据挖掘和分析。数据的海量、 及时、动态、开放,有利于我们完善分析的效度和深度。同时,大数据也有价值密度低、传播速度快等特点,数据分析的模式是否科学,这将直接影响数据分析的质 量。大数据的异构和多样性,需要舆情分析人员对一些危机事件进行高质量的数据解释。基于数据分析,能否提炼出独到、高质量的观点,在凌乱纷繁的数据背后找 到更符合客户要求的舆情产品和服务,并进行针对性的调整和优化,这是大数据时代舆情最大的变量。
大数据时代,对趋势的研判是目标。大 数据的核心和目标就是预测,具体到舆情服务,舆情工作人员从互联网浩如烟海的数据中挖掘信息、判断趋势、提高效益,虽然获得广泛且实际的应用,但还远远不 够。舆情分析人员要不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,跟踪关联舆情,不再局限于危机解决,还 要辅之以决策参考,从注重“静态收集”向注重“动态跟踪”拓展,从致力“反映问题”向致力“解决问题”拓展,使舆情产品和服务“更高、更快、更强”(视点 高、预警快、处置强)。
大数据时代,分众服务是方向。数 据的互通互联,改变了数据库、应用软件和用户界面等系统之间的“孤岛”状态。舆情服务机构应树立大舆情观念,对数据进行生产、分析和解读,探索一条为用户 提供分众化服务的信息增值之路,使舆情服务的主体和边界形成一条完整的“舆情闭环”。在这个认识基础上,舆情服务机构需把握未来几年大数据在公共及企业管 理领域发展的重要方向:横向看,将服务主体延伸至政府、企业和社会的各领域,通过搭建关联领域的数据库、舆情基础数据库等,充分整合政府和企业的数据资 产;纵向看,将产品内容延伸至包括舆情抓取、预警到决策、评估等在内的各环节,协助客户丰富和完善决策参考体系。
大 舆情,强调大数据的关联性。发展和利用好数据资源,充分反映数据爆发背景下的数据处理与应用需求,这是大数据时代最大的舆情变革。目前,国内经济社会转型 发展环境压力加大,社会周期结构性突发舆情因素增多,舆情工作者尤其需要树立前瞻意识,提高媒介素养,加强互联网“大数据”分析研判,获取情报,抓住机 遇,为长远发展打下良好的基础。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26