京公网安备 11010802034615号
经营许可证编号:京B2-20210330
后大数据时代将是什么时代
在一次互联网思维的学习讨论会上,大家当然讨论了大数据时代和大数据的思维,当然,大数据思维是互联网思维的特点之一。
“您每天敲击一次键盘,都会成为这个时代的大数据的一部分”。
这是“中国之声”的广告词。
“大数据”因互联网而成为这个时代的一个显著特征,并成功的赢取了时代金矿的美誉。数据的价值得到空前的重视,“谁掌握了数据,谁就掌握了未来”。“数据是重要的资产”。“数据只有开放互联才能成为大数据,才能发掘出价值”。当人们津津乐道大数据是如何成为时代的新宠时,似乎各行各业都离不开大数据了。
而事实上,大数据给我们到底带来了什么呢?我们究竟在大数据上获得了哪些利益呢?未来又能获得什么利益呢?尽管全球的IT精英都在绞尽脑汁的发掘和鼓吹大数据的价值,乃至国家政策也受此影响。但如果对上述问题没有得到清晰的答案,这样的影响多少存在逻辑上的盲目。
理智地思考:大数据为何产生?
因为有了计算机,才有数据。数据是计算机的食物和产物。
因为计算机爆发式的增长,导致作为其食物和产物的数据爆发式增长。
计算机的联网,自然带来其食物和产物的相互纠连。
计算机为什么要吃进数据和吐出数据?因为数据里面有我们人类需要的信息。
数据的纠连,背后是信息的关联。
即使在没有计算机的年代,信息的关联原本就存在,构成我们人类的信息世界。
那时的信息世界虽然运行缓慢,相互阻隔比较严重,但至少是清澈见底,让我们气定神闲的。
计算机在信息世界的出现,相当于蒸汽机在工业世界中的出现。
工业革命带来的是什么?产品生产效率的大幅提高和自然资源的快速消耗及生态环境的剧烈破坏,当然,还有科技的进步。
那么,信息革命带来的是?信息处理效率和范围不断提升和数据的快速膨胀,有谁想到过,和工业革命之对生态环境的剧烈破坏,信息革命对应的影响是什么?如果是破坏,破坏了什么?如果我们想都没想到过这个破坏确实可能存在,如果实际是存在的,会意味着什么?意味着人类在未觉醒的状态下,在拼命发展着一种对自己的某个世界可能带来巨大影响的技术。不像工业革命带来对自然环境的污染和破坏可以让人类直接得到相应的惩罚而觉醒。信息革命如果能带来破坏,则一定是对人类信息世界的生态环境的剧烈破坏。
信息革命可能如何来破坏人类信息世界的生态环境的呢?
在原来人类的信息世界的生态环境中,虽数据量不大,但数据的信息密度大。虽数据复制传输慢,但垃圾数据少。自从有了计算机,特别是有了互联网,数据对信息的吞噬是极其野蛮和不受约束的。数据量是很大,数据的类也很多,关联的范围也很广,但信息的密度却急剧下降。由于数据的传输和复制的速度急速提高,垃圾数据更是野蛮生长不受控制。这便是对大数据的来由的另一种看法。
确实,大数据的产生,给我们带来了在前所未有的宏观层次得到数据证实的信息,但是,这些信息,实际和人类凭直觉得到的信息也无太多的差别。相反,庞大的数据支撑下的“数据说话”的思维,让人类越来越丧失了宏观的直觉和思考的能力。
所以,大数据时代,实际是个什么时代?对这点的清醒认知,对把控人类技术发展的下一个时代确实非常重要。倘若迷糊,下一个时代是“大失控”时代,就不仅仅是科技作品中的预言了。
倘若我们清醒过来,认识到大数据的危害,我们则可能利用大数据带来的技术升级,反过来治理大数据的危害,正象我们在后工业革命时期所做的那样,环保和生态事业在新的技术支撑下,得以发展。
倘若我们做到了后者,那么,大数据时代的下一个时代,必然是个“大整合”的时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31