
后大数据时代将是什么时代
在一次互联网思维的学习讨论会上,大家当然讨论了大数据时代和大数据的思维,当然,大数据思维是互联网思维的特点之一。
“您每天敲击一次键盘,都会成为这个时代的大数据的一部分”。
这是“中国之声”的广告词。
“大数据”因互联网而成为这个时代的一个显著特征,并成功的赢取了时代金矿的美誉。数据的价值得到空前的重视,“谁掌握了数据,谁就掌握了未来”。“数据是重要的资产”。“数据只有开放互联才能成为大数据,才能发掘出价值”。当人们津津乐道大数据是如何成为时代的新宠时,似乎各行各业都离不开大数据了。
而事实上,大数据给我们到底带来了什么呢?我们究竟在大数据上获得了哪些利益呢?未来又能获得什么利益呢?尽管全球的IT精英都在绞尽脑汁的发掘和鼓吹大数据的价值,乃至国家政策也受此影响。但如果对上述问题没有得到清晰的答案,这样的影响多少存在逻辑上的盲目。
理智地思考:大数据为何产生?
因为有了计算机,才有数据。数据是计算机的食物和产物。
因为计算机爆发式的增长,导致作为其食物和产物的数据爆发式增长。
计算机的联网,自然带来其食物和产物的相互纠连。
计算机为什么要吃进数据和吐出数据?因为数据里面有我们人类需要的信息。
数据的纠连,背后是信息的关联。
即使在没有计算机的年代,信息的关联原本就存在,构成我们人类的信息世界。
那时的信息世界虽然运行缓慢,相互阻隔比较严重,但至少是清澈见底,让我们气定神闲的。
计算机在信息世界的出现,相当于蒸汽机在工业世界中的出现。
工业革命带来的是什么?产品生产效率的大幅提高和自然资源的快速消耗及生态环境的剧烈破坏,当然,还有科技的进步。
那么,信息革命带来的是?信息处理效率和范围不断提升和数据的快速膨胀,有谁想到过,和工业革命之对生态环境的剧烈破坏,信息革命对应的影响是什么?如果是破坏,破坏了什么?如果我们想都没想到过这个破坏确实可能存在,如果实际是存在的,会意味着什么?意味着人类在未觉醒的状态下,在拼命发展着一种对自己的某个世界可能带来巨大影响的技术。不像工业革命带来对自然环境的污染和破坏可以让人类直接得到相应的惩罚而觉醒。信息革命如果能带来破坏,则一定是对人类信息世界的生态环境的剧烈破坏。
信息革命可能如何来破坏人类信息世界的生态环境的呢?
在原来人类的信息世界的生态环境中,虽数据量不大,但数据的信息密度大。虽数据复制传输慢,但垃圾数据少。自从有了计算机,特别是有了互联网,数据对信息的吞噬是极其野蛮和不受约束的。数据量是很大,数据的类也很多,关联的范围也很广,但信息的密度却急剧下降。由于数据的传输和复制的速度急速提高,垃圾数据更是野蛮生长不受控制。这便是对大数据的来由的另一种看法。
确实,大数据的产生,给我们带来了在前所未有的宏观层次得到数据证实的信息,但是,这些信息,实际和人类凭直觉得到的信息也无太多的差别。相反,庞大的数据支撑下的“数据说话”的思维,让人类越来越丧失了宏观的直觉和思考的能力。
所以,大数据时代,实际是个什么时代?对这点的清醒认知,对把控人类技术发展的下一个时代确实非常重要。倘若迷糊,下一个时代是“大失控”时代,就不仅仅是科技作品中的预言了。
倘若我们清醒过来,认识到大数据的危害,我们则可能利用大数据带来的技术升级,反过来治理大数据的危害,正象我们在后工业革命时期所做的那样,环保和生态事业在新的技术支撑下,得以发展。
倘若我们做到了后者,那么,大数据时代的下一个时代,必然是个“大整合”的时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10