能做产品能运营,数据分析师的职业规划之路
刘普成是中国最懂互联网数据分析的人之一。北大ccer硕士出身,做过公务员,这位业界资深的大牛,曾先后任职于百度、豆瓣、豌豆荚,对产品、设计、运营等互联网业务有着深刻的理解。现在,他担任滴滴出行数据分析团队的负责人,统筹这家体量巨大的公司随时产生的海量数据。
作为一个成长经历颇为不同的资深大牛,他认为,推动一个人进步的本质原因是开放的心态和兴趣。硕士毕业后,他没有像大多数同学那样出国读博,或顺理成章进入金融业,而是选择在中国互联网界进行数据方面的探索,寻找一些“新”的东西。随着专业能力的提升,又开始深入学习互联网行业的其他技能,拓展自己的知识领域。
八年时间,从一名普通的数据分析师,成长为精通技术和业务的数据科学家,刘普成发现,数据分析师在不同阶段需要掌握不同的能力,本质上,是让自己的视野更开阔。
他认为,不同层次的数据分析师,在力所能及的范围内做到最好,即为优秀:
初级:提出一个业务问题,可以用数据进行回答,并能保证合理的数据结构、与业务的关联度,以及,数据是对的。
中级:有能力独立完成高质量的数据分析报告,如产品规划、市场活动等,可以cover住从前期规划到中期细节完善再到后期评价分析的整个过程。
高级:独当一面的分析师,可以负责一个子产品(一组模块)级别的项目,带领一个团队来全面解决问题,把控手下数据分析师的工作质量。技术方面,能掌控数据分析的整个过程,对数据采集、埋点、造型、进入数据仓库的清洗有良好的手段。可以回答数据能够回答的任何问题。在这里,能与不能的定义边界是,数据分析师用尽了所有可以想到的办法。
“三到五年内应该可以达到中高级的水准,当然,这要看个人努力程度了。”他说。在技术提升的同时,数据分析师还必须考虑职业发展规划的问题。
数据分析师的职业发展,是八年来刘普成一直在思考的问题。产品、运营、研发等岗位的从业者,都有机会晋升为一家公司的核心成员,与之相比,数据分析的工作却没有非常明晰的上升通道,似乎常常局限在被需求的技术工种。
刘普成花了几年时间来提高自身技术水平,同时开始探索数据分析师的出路,逐渐发现, 数据分析恰恰是最具潜力的一项工作,只不过背后蕴藏的机会被大多数从业者忽略了。站在数据高地的人,更容易培养宏观、全面的视野,这为一个人的职业发展,带来了天然的优势。
数据分析师不能只成为一个技术专家,要成为可以影响公司运作的人。结合自身经历,刘普成认为数据分析师在进阶的道路上有如下选择:
1.成为数据技能超强的产品经理产品经理的工作非常综合,既考验创意创新,也需要对用户行为和产品的逻辑进行深入的研究,经验丰富的数据分析师往往视野开阔,容易站在宏观层面去思考内在的联系。
优秀的数据分析师有好的产品感觉。以超强的数据分析能力作为背书,向产品经理发展,思维方式的优势,很容易让一个对数据敏感的产品经理脱颖而出。
2.成为数据指导业务的运营VP数据分析师常常需要通过挖掘数据背后的信息,解答市场运作的问题,指导高层的业务决策,进行精准的数据挖掘或广告投放。事实上,这也是越来越多对大数据有需求的公司招聘数据分析师的原因。
心理学、经济学和统计学加持的数据分析师,拥有普通运营人无法拥有的利器,以此作为切入点做运营工作,具有后来居上的潜能。
3.成为管理或战略事实上,除了公司高层,数据分析师是唯一站在高处俯视全局的人。一家互联网公司的各项工作,几乎都可以在数据上直观体现出来。
强大的分析和思辨能力,使数据分析师拥有鹰一般的眼睛。深度参与公司的管理和商业行为,成为一个谋划者甚至决策者,是数据分析师可以上演的逆袭。
4.成为博学广识的数据科学家随着商业的发展,越来越多的行业需要处理数据的专家,互联网+正渗透到广告、量化金融等各种各样的领域。数据分析师应保持开放的心态,多多学习视野之外的领域,成为既懂技术又懂业务知识的专家。
互联网行业的优势在于,与其他行业相比,这个领域的公司可以采集到全面的数据,并以此进行研究应用。数据分析师站在数据之巅,更加有机会时刻参与到业务中去。数据背后,每一个觉醒的分析师,都可能成长为互联网公司的核心。
数据分析师千万不要认为自己只是一个技术人员。刘普成的经历,比起数据库、统计、业务理解程序等硬性技能,严谨的工作态度、良好的沟通能力、迅速的学习能力以及随时随地的好奇心,这四项软实力,是数据分析师突破自己的决定性因素。
从业多年,置身互联网行业,刘普成有一个特别深的体会:
数据分析师不要只站在岸边看业务岗位的同事们游泳。半年都不懂业务的数据分析师是没有进入状态的。从技术人员到公司核心,数据分析师需要用开放的好奇心不断拓宽知识的疆界。
数据分析师作为一个出现时间不长的工种,大数据时代下,具有良好的发展前景,但成为螺丝钉还是成为龙头,这里面的裂变和跃迁,需要每一个数据分析师怀着好奇心精神不断拥抱新的领域,尝试新的可能。
刘普成花了将近十年,解决了职业成长的难题。他坚信,每一个坐拥大数据的分析师,手里都潜藏着一座宝藏。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31