教你五招评估大数据安全分析产品
网络犯罪和其他恶意活动的增加正在促使企业部署比以往任何时候都更多的安全控制以及收集更多的数据。现在,企业开始将大数据分析技术应用到安全监控中,试图通过范围更广更深入的分析来保护宝贵的公司资源。大数据安全分析技术部分利用了大数据的可扩展性,并结合了高级分析和安全事件与事故管理系统(SIEM)。
大数据安全分析适合很多用例,但并不适合所有用例。例如,我们应该考虑一下检测和阻止高级持续性威胁技术面临的挑战。使用这些技术的攻击者可能会采用慢节奏、低能见度的攻击模式来逃避检测,而传统的日志记录和监控技术可能无法检测到这种攻击,因为这种攻击的各个步骤可能在单独的设备执行,跨越很长的时间周期,并且看起来似乎没有关联。扫描日志和网络流量中的可疑活动有时候可能会错过攻击者杀伤链的关键部分,因为它们可能与正常活动的差别不大。而避免遗漏数据的方法之一是尽可能多地收集数据,而这正是大数据安全分析平台中使用的方法。
顾名思义,这种安全分析方法利用了大数据工具和技术,这些工具和技术可收集、分析和管理高速生成的大量数据。这些相同的技术还被用于提高各种产品的效率,从针对流媒体用户的电影推荐系统,到分析车辆性能特性来优化运输效率等。但应用到信息安全领域时,它们也同样有用。
在评估大数据安全分析平台时,一定要考虑以下五个因素,这五个因素是充分发挥大数据分析优势的关键:
• 统一数据管理平台;
• 支持多种数据类型,包括日志、漏洞和流量;
• 可扩展的数据获取;
• 信息安全专用分析工具;
• 合规性报告
总之,这些功能可提供广泛的功能来收集高速生成的大量数据,并且快速分析这些数据,让信息安全专业人员可有效地响应攻击。
第1个因素:统一数据管理平台
统一数据管理平台是大数据安全分析系统的基础;数据管理平台负责存储和查询企业数据。这听起来像是众所周知的已经解决的问题,而不应该是一个重要的特性,但它确实很重要。由于关系数据库无法像分布式NoSQL数据库(例如Cassandra和Accumulo)那样经济高效地扩展,处理大量数据通常需要分布式数据库。不过,NoSQL数据库的可扩展性也有自己的缺点。例如,我们很难部署数据库某些功能的分布式版本,如ACID事务等。
大数据安全分析产品下的数据管理平台需要平衡数据管理功能与成本及可扩展性。该数据库应该能够实时写入新数据,而不会阻止写入。同时,查询应该快速执行以支持对入站安全数据的实时分析。
统一数据管理平台的另一个重要方面是数据集成。
第2个因素:支持多种数据类型
我们通常会从数量、速度和种类来描述大数据。其中安全事件数据的多样性给数据集成带来了很多挑战。
这些事件数据是按不同的细粒度级别来收集。例如,网络数据包是低级别、细粒度数据,而有关管理员密码变更的日志条目则为粗粒度数据。尽管存在明显区别,它们还是可以关联在一起。例如网络数据包可以捕捉有关攻击者到达目标服务器采用的方法的数据,在攻击者获取目标服务器访问权限后,就可以更改管理员密码。
第3个因素:可扩展的数据获取
服务器、端点、网络和其他基础设施组件处于不断变化的状态。很多这些状态变化记录了有用的信息,这些信息应该发送到大数据安全分析平台。假设网络有足够的带宽,那么,最大的风险就是安全分析平台的数据获取组件无法应对入站数据。如果是这样的话,数据可能会丢失,而大数据安全分析平台则会失去价值。
系统可以通过对消息队列中排队数据维持高写入吞吐量,以适应可扩展的数据获取。同时,有些数据库专门用于支持高容量写入,它们采用仅允许附加的方式来写入,数据被附加在日志数据的后面,而不是写入到磁盘的任意块,这可减少了随机写入到磁盘而带来的延迟。或者,数据管理系统可以维持一个队列作为缓冲器,在数据写入到磁盘时保存数据。如果消息激增或者硬件故障减缓写入操作,数据可积累在队列中,直到数据库可以清除写入的积压。
第4个因素:安全分析工具
Hadoop和Spark等大数据平台是通用工具。虽然它们可以有效构建安全工具,但它们本身并不是安全分析工具。分析工具应该可以扩展来满足企业基础设施中生成的数据,这样来看,Hadoop和Spark等工具满足这个标准。此外,安全分析工具应该考虑不同数据类型之间的关系,例如用户、服务器和网络等。
分析师应该能够在抽象层面查询事件数据。例如,分析师应该能够查询使用特定服务器和应用的用户之间的关联,以及这些设备之间的关联。这种查询需要更多图形分析工具,而不是传统数据库中使用的行和列的查询。
第5个因素:合规性报告
合规报告不再是“最好满足”的要求,而是必须满足的要求。很多因合规目的报告的数据元素都涉及安全最佳做法。即使企业不需要维持合规报告,这些报告也可以为企业提供很好的内部监督。
当企业需要提供合规报告,企业需要审查各种大数据安全平台中的报告制度,以确保满足企业的业务需求。
有效部署大数据安全分析平台
大数据安全分析利用了大数据平台的可扩展性,以及安全分析和SIEM工具等的分析功能。对于企业而言,重要的是认识到这两者的特性,以及有效部署大数据安全分析平台所需的五个因素。简单地使用“安全”来重新命名大数据平台或者坚信SIEM可以处理大数据(尽管它并不是为此目的而构建)并不是真正的大数据安全分析平台
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21