IDC研究表明,包含结构化和非结构化的大数据正在以每年60% 的增长率持续增长,到了 2020 年全球数据总量将增长 44 倍,达到 35.2ZB。国内知名大数据学者,电子科技大学计算机互联网中心主任周涛博士表示:“‘大数据’一词已经无处不在,其被用于承载所有类型的概念,包括海量数据、实时数据、社交媒体分析、下一代数据管理能力等。对于企业来说,对大数据的理解不应仅仅局限于技术领域,而应成为一项业务上需要优先考虑的任务,因为它能够带来全球整合经济时代商业模式的巨大变革。业界已经从对大数据重要性的认识阶段,发展到实践大数据的必要性的战略实施阶段,IBM最新发布的白皮书对于广大期望在‘大数据时代’掘金的中国企业具有非常好的指导意义。”
段仰圣
《分析:大数据在现实世界中的应用》由IBM商业价值研究院与牛津大学赛德商学院共同制定。通过对全球95个国家、26个行业的1144名业务人员和IT专业人士进行调研,和对20多名学者、业务主题专家和企业高管进行采访,此次的调研为企业更深入了解大数据市场趋势、更准确衡量当前的大数据收益程度给出了建设性的指导。调研白皮书结果显示:近三分之二(63%)的受访者表示,信息(包括大数据)和分析的使用为其组织创造了竞争优势。对比IBM 2010新智慧企业全球高管联合调研,这个比例在短短两年内增加了70%。”
调研得出五大关键结论,表明全球组织正在从业务需求出发,采用务实的方法实践大数据;同时,根据这五大结论,白皮书为企业逐步开展大数据举措并便从大数据中获取最大的商业价值提供了五项关键建议,包括:以“客户为中心”,制定前期“大数据战略规划”、制定全面完整的企业“大数据蓝图”、从现有数据入手,设定并完成短期和阶段性的“大数据战略目标”、根据业务优先级,逐步建立分析体系,循序渐进提升“大数据分析能力”以及定制可衡量的指标分析“大数据 ROI(投资回报率)”。
IBM全球企业咨询服务部业务分析与优化服务大中华区总经理段仰圣表示:“大数据时代较之以前具有两项显著区别——大量产生的新型数据不再适用于传统数据库,与此同时,分析能力对企业实施大数据具有至关重要的作用。这两项区别主要来自大数据具有的4V特性:数量(Volume)、多样性(Variety)、速度(Velocity)和真实性(Veracity)。IBM认为,尽管前3个V涵盖了大数据本身的关键属性,但真实性是当前企业亟需考虑的重要维度,将促使他们利用数据融合和先进的数学方法进一步提升数据的质量,从而创造更高价值。”(文章来自:CDA数据分析师)
“智慧的分析洞察”为核心:IBM聚集全方位资源,构建业界最全面的端到端、高整合大数据价值体系
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22