传统行业 如何快速搭建大数据团队
在越来越多商城沦为“试衣间”、电器卖场沦为“产品体验店”、建材市场沦为“材料展示中心”的今天,越来越多的传统行业已经意识到他们需要变革,需要用大数据的手段来帮助他们突破重围。
大数据的起源要归功于互联网、电商、电信运营商、金融等行业,由于这些行业自身的特点,在生产运营过程中能够天然获取海量的数据,他们是大数据行业的先行者。
但可以断言,大数据更大的需求、有广泛的应用前景仍然在传统行业,大数据将会是传统行业适应互联网时代的最佳结合点。
著名服装品牌ZARA就是传统行业利用大数据为企业重新注入活力的例子。ZARA通过整合线下客户对衣服的体验信息与线上网民喜欢的产品或趋势信息,及时改进产品样式,在互联网时代实现了线下零售店销售成绩的完美逆袭。
那么,传统行业要做大数据团队,要做好2个准备。
1、具备大数据思维
能拿到什么数据?
这些数据有什么用?
怎样用这些数据?
许多餐厅都非常关注如何在空闲时刻的人气聚集问题,比如用优惠的下午茶吸引人气。为达到这个目的,我们可以获取客户的点餐内容、用餐时间、用餐人数,并由服务员顺便收集客户特征的情况(年龄范围,是否家庭聚餐,是否商务宴请等,客户的意见反馈等)。
这样,我们就可以通过大数据知道哪些菜式受欢迎?哪些菜式需要改进?喜欢某个菜式的人到底是什么人?
发现的有些结论会比较明显,是有经验的餐厅管理者能够通过某些传统方式得到的。但是,有一些发现必定是有经验的管理者都难以察觉的。而且,大数据的方式也能够让餐厅管理者的反应更加精准有效、更加迅速。
2、大数据团队,你准备好了吗?
提到大数据人才,往往大家想到的是具备大数据专业知识的专家,显然这个角色在传统行业以往的运作过程中是缺失的。所以,既然要构建大数据团队,必须要有大数据专业背景的人才。
某全球500强的通信运营商重金请国际知名咨询公司做大数据规划,然后压给IT部门按此方案执行,IT部门欲哭无泪,因为如果按这些专家做出的规划来做,公司全部系统、所有流程制度都要推倒重来,所以这个方案完全没法落地。
大数据不能脱离行业和企业本身去谈技术,那是空中楼阁;脱离大数据思维的分析,将导致数据的死应用。
所以,传统企业组件大数据团队,不仅需要大数据的技术人才,还需要有深厚的行业背景并具备大数据思维的勇于变革者。
传统企业在建设大数据团队时,容易陷入3个误区。
误区1:挖个大数据牛人,就能搞定
很多企业认为建设大数据团队,只要把牛逼的人才挖过来,就能够把公司的大数据做好。最终的结果往往是一流的人才来到企业后水土不服,并不能发挥出期望中的作用。
其实不难理解,同样是利用大数据进行客户画像、挖掘客户需求。对于电商而言,在电商平台建设之时,很多数据就已经相对规整的存储系统里了,只需要通过网站流量统计工具,分析用户流量来源和特点;然而,对于传统行业而言,先得搞清楚的是企业内部的运作流程和每个大大小小系统上能够提供什么数据,可能根本没有现成的数据给你。
虽然分析目标一样,但是数据获取方式、业务流程、分析重点、应用场景都截然不同,在电商方面牛逼的大数据人才,可能在某些行业知识上是缺失的,难以适应传统行业。因此,大数据人才的引进需要充分考虑人才和企业的适配性。
误区2:直接交给专业公司,坐等收获
传统企业认为,既然我缺乏大数据团队,那我直接请专业大数据公司、咨询公司搞定就好了,又专业,见效又快。
如果企业如此选择,自己的大数据团队就很难建起来了。专业团队干活时,企业人员参与不够;等专业团队撤离之后,自有团队接不上,原有的大数据成果也会在闲置中最终变得无用,企业在付出巨额酬劳后还是做不好大数据。
误区3:A公司做到很好,直接把经验搬过来
在ZARA建立大数据团队,收集并分析线下客户意见,从而改进产品款式大获成功后,H&M一直想跟上Zara的脚步,希望利用大数据改善产品流程,成效却不明显,两者差距愈拉愈大,这是为什么?
Zara用大数据最重要目的是缩短生产时间,让生产端依照顾客意见,能于第一时间迅速修正。但是,H&M内部的管理流程,根本无法支撑大数据提供的庞大资讯。H&M的供应链中,从打版到出货,需要三个月左右,完全不能与Zara两周相比。
很多企业没有大数据团队建设经验,看到别人的成功经验,就想直接照搬,却没有考虑到不同行业有不同特征,就算同一行业中的不同企业,其组织架构、管理方式、生产方式也有很大的区别,这很可能导致大数据团队建设走上失败。
我们认为,传统企业在搭建大数据团队时,要做到以下几点:
1、老大不参与?那可不行
中国有句老话叫做“屁股决定脑袋”,具体办事人员往往难以在全局和宏观的高度把握大数据对于一个企业的应用规划和价值。
企业推行大数据的最终目的,是要让它成为公司决策的“大脑”、市场销售的“指挥棒”,说到底,大数据要能够支撑方方面面的工作,是整个企业级别的大事。
所以,大数据战略的推进,需要企业领导者充分参与,才能保证不跑偏。否则,大数据项目只会沿袭旧有的运营模式或流于形式。
2、先内部“组队”,专家只能做“外援”
企业做大数据要先组队:除了“外援”,自己企业里搞IT建设的、做市场的、做销售的、做服务的、搞管理的都得配上。简单来说,就是这个队伍里,必须有“做数据”的人、“分析数据”的人和“用数据”的人。
“外援”总归是要离开的,只有通过大数据的前期实施,实现自己大数据团队的快速成长,最终才能达到自有团队独立、持续应用大数据的目标。
3、先尝尝大数据的“味道”,再谈怎么做
很多企业做大数据,一开始就大张旗鼓做建设。要知道大数据平台一旦建起来,若是不好用或是有问题,再来改,搞不好就是全盘颠覆。
所以,建议在建大数据平台之前,先花一点时间做大数据的尝试。比如,对于要开展的一个促销活动,给出大数据的支撑。即便是最简单的大数据尝试,也能让我们发现搭建大数据体系时可能存在的问题。
4、做大数据就得“私人定制”
数据拿不到?流程走不通?系统和系统之间无法交互?这些看似不大的问题,却是大数据在未来是否能够发挥效力的底层基础。把好企业的脉,发现潜在的问题,才能够最大程度的发挥大数据的效力。
结束语
互联网诞生时,有人说“在网上,没人知道你是一条狗”。大数据时代,我们不但知道你是一条狗,而且知道你是一只小资、很宅的金毛,知道你爱吃RoyalCanin的狗粮,还知道你喜欢红色。
任何时代的变革,一旦开始就不可逆。传统企业要做的,是顺应变革,快速组建自己的大数据团队,借以发现属于自己的机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29