大数据时代,数据与信息安全如何完美平衡
现在我们都在谈信息安全。我看到网友澄清了一个概念,什么叫做信息安全。他把信息安全分成三大类,我觉得很对,在这里分享给大家。
信息层面的信息安全,学校中的信息安全专业,主要致力于通信加密,密码加固等传统的安全领域。
用户层面的信息安全,也就是说用户把信息存储到了你的服务器上,你要怎么样保证用户的隐私不受侵犯。
架构层面的信息安全,就是如何保证信息不丢。
我们逐个来讲。
我们为什么要从HTTP切换到HTTPS?为什么有一天大家都抛弃了HTTP而投向了HTTPS的怀抱?毕竟HTTPS需要消耗比HTTP更大的硬件开销,在架构层面同样需要做出很多的调整。
那是因为HTTP无论对于网络传输的内容,还是对于协议本身信息都没有做过任何的加密,从而使得用户的任何信息在网络中都可能被捕获。这时,我相信有人会讲:那我们是一个内容浏览类的网站,用户并不需要输入信息,那是不是就可以不使用HTTPS了呢?答案是使用HTTP不仅会发生泄漏数据,还会发生注入数据;这也是我们常常提到的流量劫持。
当然,由于HTTPS对于服务器资源的消耗,HTTP也推出了HTTP/2,除了一些新的特性之外,当然也加入了信息加密的功能。另外,密码的加密也是老生常谈,密码的加密是一个听上去简单实际很复杂的事情,归根结底,密码加密是一个需要平衡的事情,如果采用简单加密方式(例如MD5),那么自然也会容易被解密,但是如果采用复杂加密算法,自然也对CPU提出了更高的要求。
用户隐私在近年来被提升到了一个前所未有的高度。大数据时代人人都在做数据分析,却又人人都在做用户隐私。那么如何把握数据分析和用户隐私之间的平衡?
也许我们在很久之前就触犯了“用户隐私”,当我们在电商网站上点击“喜欢”的时候,这个数据来源于“用户隐私”;当我们在搜索引擎上看到“搜索广告”的时候,这个数据也来源于“用户隐私”;甚至我们可以说:如果我们严格地去界定“用户隐私”,我们如今的产品会死掉90%甚至更多。
那么我们到底如何去客观地理解用户隐私?我对隐私的红线是:用户的数据分析是机器可读但是人工不可读的。举个例子:
我们在做用户的垃圾邮件过滤的时候,我们需要对每封邮件抽取特征,其中包括发件人,发件时间以及对于邮件正文内容的结构化抽取,然后通过分类算法对邮件进行分类。
但是我们要注意一点,这个过程,我们对“人”是不可见的,我们会对几千万的数据进行机器处理,我们处理的是宏观上的“大数据”;但是如果我们是通过人去扫描数据库,然后提取出了邮件记录并且去做人眼识别,那么这个行为是侵犯用户隐私的。
再者,是否侵犯用户隐私的一个隐含区分点是“侵犯隐私”之后做了什么?例如我们对搜索记录进行数据分析后为用户推荐了更好的结果,我们说这并不是侵犯数据隐私;但是如果我们对搜索结果进行分析后,将用户的资料提供给了某医院,那么用户隐私就被侵犯了。
一言结之,是否侵犯隐私一定程度上关联与后续的操作是否侵犯到了用户切身的利益。
最后,是否侵犯隐私的一个标准在于我们最终暴露的是用户的什么信息。
我们都知道DMP行业提供API使得DSP可以进行更加精准的广告投放,但是提供什么样的信息成为了关键。如果提供的是用户的消费记录,这个是侵犯隐私的,如果提供的是通过数据挖掘得到的收入水平,那么这个信息也许是不侵犯隐私的。
其实用户隐私是一个很敏感的词,也许这个词天生就与数据挖掘、数据分析互相抵触,法律上也并没有对相关的标准拉过红线,如何把握也许值得我们更深入地探讨。
这一层面的安全说起来比较复杂,我只举两个例子。
第一,一份数据应该存多少份才能保证数据不丢,什么样的存储架构可以较好地平衡数据备份和存储成本之间的平衡?在存储上,我们希望平衡成本和可靠性,例如我们可以通过EC2冗余算法来平衡;再者我们需要多机房的互备来防止数据中心的灾难性事故;但是是否我们就是盲目地将存储成本除以2?这不但对于成本是巨大的消耗,对于网络带宽、磁盘压力也是种巨大的消耗;那么我们可以去折中地拆分数据的冷热分区,以及适当采用廉价磁盘+云备份的模式保证我们整体数据的安全。
第二,在存储架构上对于高安全性信息进行隔离。例如我们将用户的用户名、密码、盐存储在同一个数据库,那么对于入侵者而言,只要拖下来就全部获取了。我们是否应该将彼此依赖的盐、加密密码分离存储,或者采用更高的安全性方案进行存储?是值得我们探讨的事情。
另外,提及一个小的trick:由于MYSQL的各种入侵方法已经成熟的不能再成熟了,所以对于一些公司而言,不妨将一些敏感、又访问压力不大的信息存储于一些相对冷门的数据库中,这样可以在一定程度上加固信息的安全性。
信息安全是一个庞大的领域,其中涉及到很多知识点,但是大多公司都对其没有提及足够的重视,因为信息安全是一个“黑天鹅”事件,以至于大家不愿意在上面投入巨大的精力,也希望随着国内对于安全的越来越重视,更多的公司也能在信息安全领域投入越来越多的注意。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26