EXCEL数据分析处理(3)
高级筛选可以使用较多的条件来对数据清单进行筛选,这些条件既可以是与条件,也可以是或条件,或与条件,与或条件的组合使用,还可以使用计算条件。
1.一般情况下的高级筛选
利用高级筛选对数据清单进行筛选的步骤如下:
(1)首先应建立一个条件区域。在条件区域中,同一行中的条件是与条件,也就是这些条件必须同时满足;不同行中的条件是或条件,也就是这些条件只要满足其一即可。如需要查找张三销售彩电的所有记录,则建立条件区域如图2-45所示。
图2-45 建立条件区域
(2)单击数据清单或数据库中的任一非空单元格,然后单击【数据】菜单,选择【筛选】子菜单中的【高级筛选】项,则系统弹出如图2-46所示的【高级筛选】对话框。
图2-46 【高级筛选】对话框
(3)一般情况下,系统将自动给出了数据区域,用户只需在【条件区域】栏中输入条件区域(本例中为B19:C20,也可以用鼠标拾取单元格区域,此时在条件区域中将显示“销售明细清单!$B$19:$C$20”。
(4)高级筛选结果可以显示在数据清单的原有区域中,也可以显示在工作表的其他空白单元格区域,系统默认的方式是在数据清单的原有区域中显示结果。若需要在工作表的其他空白单元格区域显示结果,则在【方式】项中选中“将筛选结果复制到其他位置”,并在【复制到】栏中输入需要显示筛选结果的单元格(开头的一个单元格即可)。图2-47为在原有区域显示的高级筛选结果。
图2-47 在原有区域显示的高级筛选结果
当需要显示原始的全部数据时,可以单击【数据】菜单,选择【筛选】子菜单中的项目,在【筛选】子菜单中选择【全部显示】即可。
同样的方法可以进行建立或条件、与条件与或条件的组合使用情况下的高级筛选。
2.计算条件情况下的高级筛选
在有些情况下,筛选的条件不是一个常数,而是一个随数据清单中数据变化的计算结果,此时无法直接利用高级筛选进行数据筛选。不过,我们可以通过计算条件的方法解决。以例2-20为例(见图2-37),这里要找出销售额大于平均销售额的所有记录。步骤如下:
(1)在数据清单以外的任一空单元格内输入平均值计算公式,比如在单元格H20中输入公式“=AVERAGE(E3:E16)”,这里要特别注意的是存放平均值计算公式的单元格的列标不能与数据清单的任一列标相同,如图2-48所示。
图2-48 计算条件情况下的高级筛选
(2)设置条件区域,条件区域的列表可以是除数据清单中数据标题以外的任何文本,而筛选条件可在单元格B20中输入“=E3>$H$20”,这里要特别注意:必须以绝对引用的方式引用销售额平均值,以相对引用的方式引用数据清单中的数据。
(3)按照前面介绍的步骤进行高级筛选,其中高级筛选的数据区域为$A$2:$G$16;高级筛选的条件区域为$B$19:$C$20,则筛选结果如图2-48所示。
在对数据进行分析时,常常需要将相同类型的数据统计出来,这就是数据的分类与汇总。在对数据进行汇总之前,应特别注意的是:首先必须对要汇总的关键字进行排序。
例如,在例2-11中,要按地区进行自动分类汇总,其步骤如下:
(1)首先对“地区”进行排序,排序方法见前面所述。
(2)单击数据清单或数据库中的任一非空单元格,然后单击【数据】菜单,选择【分类汇总】项,系统弹出如图2-49所示的【分类汇总】对话框。
图2-49 【分类汇总】对话框
(3)在【分类汇总】对话框中,【分类字段】选项下选择“地区”,【汇总方式】选项下选择“求和”,【选定汇总项】选项下选定“数量”和“金额”,单击【确定】按钮,则分类汇总的结果如图2-50所示。
图2-50 按地区分类汇总结果
在图2-50中,左上角有3个按钮,按钮1表示1级汇总,显示全部的销售数量和销售金额汇总;按钮2表示2级汇总,显示各地区的全部销售数量和销售金额汇总;按钮3表示3级汇总,显示各地区的销售数量和销售金额的汇总明细及汇总额(即图2-50所示的汇总结果)。
图2-50中,左边的滑动按钮为隐藏明细按钮,单击此按钮,则将隐藏本级的明细数据,同时变为显示明细按钮,再单击按钮,则将显示本级的全部明细数据,同时变为。
在上述自动分类汇总的结果上,还可以再进行分类汇总,例如再进行另一种分类汇总,两次分类汇总的关键字可以相同,也可以不同,其分类汇总方法与前面的是一样的,此处不再介绍。
数据分析咨询请扫描二维码
初级市场分析师在工作中面临着重要任务之一:评估竞争对手的表现。这项工作不仅有助于描绘行业竞争格局,还能帮助企业发现自身的 ...
2024-11-27基础知识的建立 要想在数据分析领域脱颖而出,首先需要打好坚实的基础。 数据分析的基础知识十分重要,其中包括统计学、概率论、 ...
2024-11-27# 要学习Python数据分析 掌握Python基础知识 - 首先需要掌握Python的基础知识,包括基本语法、数据结构(如列表、元组、字典等) ...
2024-11-27学数据分析能在什么单位工作 数据分析的就业领域概述 数据分析专业毕业生广泛应用于各行各业,包括但不限于以下单位: 政府机关 ...
2024-11-27想学数据分析需要学哪些课程 数据分析学习路径推荐 基础课程: 统计学: 统计学作为数据分析的基石,涵盖概率论、描述性统计、 ...
2024-11-27# 现在什么行业发展前景最好 **人工智能与机器学习** - 人工智能技术快速发展,广泛应用于智能家居、自动驾驶等领域。 - 具备巨 ...
2024-11-27# 未来最有前景的行业 **人工智能与机器学习** - 人工智能被认为是未来最具潜力的行业之一,其应用范围广泛,包括智能家居、医 ...
2024-11-27数据分析领域蓬勃发展,成为当今行业中备受追捧的职业之一。作为一个初入此领域的学习者,您可能会困惑于应该学习哪些课程才能打 ...
2024-11-27统计与大数据分析专业的就业前景非常广阔,随着数字化时代的到来,这一领域的专业人才需求量不断增加。以下是关于该专业就业前景 ...
2024-11-27数字经济作为全球经济的重要组成部分,正在迅速发展并深刻改变着经济结构和竞争格局。根据多项证据,数字经济的发展现状和趋势可 ...
2024-11-27数据运营是指通过收集、分析和利用大量数据,为企业决策和业务发展提供支持的工作。其核心任务包括数据的采集、整理、分析、挖掘 ...
2024-11-27数据建模是一种重要的技术,用于有效组织和记录系统数据,旨在满足特定业务需求并确保数据的准确性和一致性。这一过程通过抽象化 ...
2024-11-27《Python数据分析极简入门》 第2节 8-2 Pandas 数据重塑 - 数据堆叠 数据堆叠 df=pd.DataFrame({'专业':np.re ...
2024-11-27数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26