基层工商大数据运用思考与建议
工商部门作为市场主体的入口和主要监管部门,掌握了市场主体从出生到消亡的大数据。为更好地运用大数据,探索便民高效、务实管用的服务监管机制,重庆市工商局沙坪坝区分局就大数据运用工作进行了调研思考,并提出了对策建议。
存在的主要问题
数据采集渠道相对分散。目前我局数据的采集渠道主要分为3种:一是通过综合业务系统采集工商内部数据,二是通过企业信用信息公示系统采集辖区各企业数据,三是其他数据由各部门自行采集。数据分散、整合度不高的问题突出。
数据质量过于粗糙。一是数据失真。企业在填报年报数据时,为逃避税收,往往虚报营业额、资本金等数据。二是数据有瑕疵。由于企业数据录入人员责任心不强等原因,导致数据填写不全、逻辑错误、前后不一等问题突出。比如,在2014年度年报中,我局辖区烟草公司共提供3000多条数据,但数据没有填写营业执照号等项目,只填写了企业名称等项目,无法与工商数据进行整合,最后只有100多条数据比对成功,数据比对成功率仅为3%。
数据采集时间相对滞后。按照《企业信息公示暂行条例》的规定,企业应在即时信息形成之日起20日内进行公示。但由于部分企业不了解政策规定、不重视信息公示或平时业务繁忙忘记公示等原因未及时公示信息。
采集手段缺乏强制性。按照《企业信息公示暂行条例》的规定,企业未按规定报送公示信息,将被列入经营异常名录。工商部门每年按照3%~5%的比例进行抽查,被抽查到的概率很小;即使被抽查到,也可以通过补录然后申请移出经营异常名录,因此这种手段对企业缺乏强制性。
数据分析方法过于简单。现行的工商数据分析一般是通过分析报表,进行简单的、初级层面的加减运算,形成辖区市场主体发展分析报告和商标、电商、广告、合同、消费维权等各业务监管现状分析。然而,这些数据是可以通过数据挖掘、关联分析、云计算等专业统计分析方法进行高层次的深度分析,发现影响社会经济发展的系统性因素,为政府进行宏观决策提供参考。
对策建议
充分利用现代信息技术,建立统一的数据采集平台。针对现行数据采集渠道分散的问题,建立统一的微信平台进行数据采集。将辖区各部门的数据,通过数据库桥接配置与该微信平台进行对接,真正实现部门间数据共享。开发“一键报送”功能,各企业用户通过扫描该微信平台二维码,真正实现年报信息、即时信息快速上传,实现企业和政府部门之间数据共享。开发“一键投诉”功能,消费者可以通过该微信平台快速举报,也为工商部门采集了消费维权数据。开发“一键上传”功能,各街镇、社区通过该微信平台将日常检查中发现的情报信息实时上传,为工商部门采集社会监督数据。
制定数据采集规范,建立统一的数据质量标准。针对数据质量相对粗糙的问题,积极争取当地政府的支持,尽快出台辖区数据采集规范,统一数据采集标准。采取“一表填报”的方式,各部门按照标准要求,按照时间顺序,使用统一表格进行数据填报。比如,企业在办理注册登记时,由工商部门在该表上填报登记信息。企业在办理行政审批时,由相关部门继续在该表上补充许可信息。税务、银行等部门和机构按照时间顺序在该表上录入相应数据。
建立自动提示报警系统,提高数据报送实效性。针对数据采集时间相对滞后的问题,开发新软件,建立自动提示报警系统。比如,企业形成即时信息20日内未报送即时信息的,平台每日发送短信或微信提醒企业;企业超过20日未报送的,平台发送报警短信或微信告知企业;企业被列入经营异常名录的,平台每日发送短信或微信提醒企业,同时将名单用短信或微信发送给各部门和公众,让企业接受部门和社会监督。
多措并举,提高数据分析水平。一是开发“企业信用体检”功能,通过对数据的加工处理和模型构建,模拟人体医学体检形式,对辖区企业进行“信用体检”,全面掌握企业整体健康状况及趋势变化,并一键生成企业信用体检报告。二是加强与高校、科研机构的合作,完善工商数据分析模式。三是主动购买第三方专业机构服务,将海量数据进行分析比对,挖掘有效信息,出具专业的分析报告,为政府科学决策提供有效依据。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21