从用户角度看BI系统中数据分析模型的层次
在BI商业智能系统中,面向分析的数据模型一般是多维数据分析模型,分析模型由相应分析领域的分析维度(见附1)和分析指标(见附2)组成。针对面向不同层级用户的需求,分析模型按照分析的粒度划分为不同的层次,这里以面向高层管理人员宏观管理及决策分析需求、面向中层管理人员及业务人员的日常经营分析及业务跟踪与监控需求为例,仅将分析模型划分为“经营层次的分析模型”、“管理层次的分析模型”两个层次。
1、经营层次的分析模型
经营层次的分析模型是按照业务环节(业务环节是业务流程中的业务事件、交易事务等业务操作单元)组织的多维分析数据模型,一般情况下每个业务环节包含一到两个分析模型,该层次的分析模型一般保存细节粒度的事实数据,以便满足该环节的未知分析需求对维度组合及数据聚合等方面的灵活要求,同时也能够避免当业务流程发生改变,仅通过对维度成员的标识与追加及对事实数据的横向及纵向扩充就能够适应,而非因维度梳理补全、事实粒度细节不够所导致的对既有模型及数据的摒弃与重建。
经营层次分析模型的例子有计划预算模型、客户拜访模型、营销活动模型、物料请购模型、采购分析模型、入库分析模型、库存分析模型、库存异动模型、出库分析模型、客户订单分析模型、临检分析模型、医院结算模型、成本分摊模型、客户价格分析模型、客户耗材模型、客服投诉模型、质控核查分析模型、凭证分析模型、科目分析模型、核算分析模型(含往来核算,即往来客户及应收应付数据)、人员结构与变动模型、薪资分析模型、人员培训模型、招聘模型等。
2、管理层次的分析模型
管理层次的分析模型是基于经营层次的分析模型构建的,一般通过提升粒度(如时间维度的最小周期提升到月)、降维(如财务及业务分析模型通过将维与预算模型融合为预算执行跟踪模型等)并通过一致性(公共)维度联合等手段,形成横跨多个业务单元的管理模型。
管理层次分析模型的例子有:计划预算跟踪模型、库存需求预测模型、产品销售跟踪与分析模型、账龄分析模型、财务报表及指标分析模型、综合财务绩效评价模型、人员绩效分析模型等。
附1:分析维度
分析维度类似于业务实体,类似企业管理及业务领域的主数据信息,每个维度都要根据业务需求,按照多个视角组织成不同的层级关系,并分别包含若干扩展属性。主属性用来组织维度的层次结构并作为主要标识,主属性和扩展属性都可以在在查询分析中使用。
以医学检验行业BI为例,维度的例子有时间、地区、机构与人员、医院、讲师、病人、项目(套餐)、设备、仓库、物料、供应商、线路、车辆等。
附2:分析指标
分析指标是指在企业业务过程各环节中(如采购、营销、检验、结算等),产生的量化指标(直接产生的原始指标可成为度量值)。分析指标按照在各个维度上是否可以累加的特性区别,有全累加指标(如销售量、销售额)、半累加指标(如期末余额,在时间上不可累加,在其他维度上可累加)、非累加指标(如产品单价、各种比率等)。
在上层分析应用中使用的分析指标,一般是基于原始分析指标计算而来的衍生指标。
以医学检验行业BI为例,分析指标的例子有物料申购数量、库存量、待检数量、实收金额、分摊成本额、年初数量、期末余额等。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20