从支付宝数据分析网购消费者行为
没有消费者,交易便无法成立,对于商家而言,关于消费者的数据至关重要。曾经,获取一份消费者报告需要通过漫长而周密的调研,而随着电商的不断发展,数据量级不断增大,服务于商家的各种数据产品应运而生,获取消费者数据的方式变得更便捷,成本也更低。
这其中,支付宝数据是所有数据中最大的金矿。首先,支付宝数据基于真实的消费数据,或者说是基于每一笔真实交易产生的数据,相比较其他的消费者调研 数据更为可靠;其次,支付宝数据不仅仅包括淘宝,其用户群体更为广阔,可以说包含全领域电商的方方面面,其数据之丰富,是其他任何公司无可比拟的。
因此,《天下网商·经理人》、天下网商数据中心联合支付宝数据罗盘,从淘外商户数据入手,带来真实的支付宝淘外消费者网购数据报告,以飨读者。
特别说明的是,这些数据样本来自于2012年支付宝支持的除淘宝之外的电商网站,具有极高的参考价值。
网购消费者人口特点
1.网购消费者年龄分布:年轻人是网购主力
淘外电商网站30岁以下网购消费者占比超过六成,40岁以上网购消费者占比10%左右,可以看出目前网购消费者总体较为年轻。
2. 网购消费者地域分布:网购向三四线城市普及
目前淘外电商网站的消费者主要分布在一二线城市,占比达到67.9%。另据支付宝年度对账单显示,2012年四线城市的网上支付用户数增长64%,网上支付金额增长68%,均超过一二线城市。网购已经从发达地区开始向次发达地区逐渐普及,小城市的发展速度不容小视。
淘外电商网站消费者人数最多的省份是广东,上海、江苏、浙江、北京也进入前五。而根据CNNIC数据,2012年上海网民人数绝对值排名为全国第 13位,综合支付宝数据,可见上海网购渗透率非常高。网购消费者分布前五省份占比合计超五成,前十省份占比合计七成左右,可见网购消费者的地区集中度较 高。
网购消费者行为特点
1.购物网龄分布:四成以上消费者购物网龄在2年以下
淘外电商网站上四成以上消费者购物网龄在2年以下,其中2012年新增消费者占比,即购物网龄1年以下消费者占比达到23.4%,新增消费者较多。
2.购买频次:大多数消费者每个月仅网购一次
七成淘外电商网站消费者每个月仅网购一次,每个月网购3次以上消费者比例不足15%。对电商来说,增加消费者网购活跃度是一个重要问题。
3.网购时间分布: 消费者在工作日网购的热情更高
消费者在工作日网购的热情更高,周末网购的消费者明显减少。由于在周末或者节假日的时候,消费者可以更为自由地安排自己的时间,购物场景可能转移到线下,而在工作日,消费者没有大量的时间外出购物,所以更倾向于选择方便快捷的网购。
消费者网购时间与作息时间一致,购物时段主要集中在白天上班时间和晚上在家时间,其中白天上班时间购物热情会比晚上下班在家时间高,上下班途中和吃饭时间购物热情略有回落。商家可根据网购时间分布调整战术,更好地满足消费者的网购需求。
4.客单价分布:七成以上消费者网购客单价在200元以下
淘外电商网站客单价1000元以上的消费者占比达到9%,但是七成以上消费者网购客单价都在200元以下,可见,目前大多数消费者在网购中倾向于购买便宜的物品。
5.购物偏好:服装和饰品类目是所有人的最爱
不论男女,消费者最爱购买的前两位类目都是服装、饰品。家居用品是女性最爱购买的第三位类目,男性的第五位,可见女人比男人更爱买家居用品。3C数码是女性最爱购买的第五位类目,男性的第四位,可见男人比女人更爱买数码产品。
各年龄段购物偏好前两位的都是服装和饰品,但前五位购物偏好随着消费者年龄的增长会有一定变化。如家居用品是24岁以下消费者偏爱购买的第五位类 目,而从25岁开始,家居用品提升至第三位;对30~39岁年龄段的消费者来说,母婴用品进入了前五位,这个数据反映了网购人群中大多数人选择了晚婚晚 育。40~49岁消费者关注运动品类较多,运动进入这个年龄段购物偏好前五位。60岁以上消费者热衷于从网上购买食品,食品跻身其购物偏好前五位,网购食 品为没有年轻人行动方便的老年人提供了生活的便利。
数据分析咨询请扫描二维码
必备的职业技能 统计学基础 - 理解概率、假设检验、回归分析等统计概念。 - 运用统计方法对数据进行分析和解读。 编程能力 - 掌 ...
2024-11-27基础课程 - 统计学基础: 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识。这有助于分析师更好地理解数据背后 ...
2024-11-27数据分析领域涉及众多工具软件,涵盖了从数据处理、分析到可视化的各个方面。在选择适合自己需求的工具时,需要考虑数据规模、分 ...
2024-11-27在数据分析领域,选择合适的工具至关重要。不同的软件适用于不同的需求和技能水平。以下是几款值得考虑的数据分析软件: - Table ...
2024-11-27数据分析中常用的Excel与Python函数公式涵盖了广泛的应用场景。掌握这些基础和高级技巧对于成为一名优秀的数据分析师至关重要。 ...
2024-11-27Python是一种高级编程语言,由荷兰程序员Guido van Rossum于1989年圣诞节期间开始开发,并于1991年首次发布。Python的设计哲学强 ...
2024-11-27课程内容 数学基础: 高等数学、线性代数、概率论与数理统计、微积分等为算法设计和数据分析打下基础。 编程与算法: 掌握 ...
2024-11-27爬虫工程师是互联网时代中至关重要的职业之一,他们的工作内容主要涉及编写和维护网络爬虫程序,进行数据采集与清洗,设计系统架 ...
2024-11-27技能需求 数据管理与建模 - 掌握SQL、HiveQL、Spark SQL等数据库语言,进行复杂数据查询和分析。 - 使用数据建模工具如ER/Studio ...
2024-11-27技术技能 - 编程技能 - 掌握SQL、Python、R语言等编程工具是基本要求,可用于数据提取、清洗和分析。 - 数据分析与建模技能 ...
2024-11-27财务数据分析职业展望 - 需求激增: 随着企业信息化和数字化进程的加速,财务数据产生和积累速度急剧增长,推动了财务数据分析需 ...
2024-11-27技术技能 数学与统计技能:数据分析师需要具备扎实的数学基础,包括统计学、概率论、多变量微积分和线性代数等知识,以帮助理 ...
2024-11-27选择适当的工具和软件 选择恰当的工具对于创建出色的数据分析图表至关重要。Excel提供强大的数据可视化功能,R语言的ggplot2包 ...
2024-11-27初级市场分析师在工作中面临着重要任务之一:评估竞争对手的表现。这项工作不仅有助于描绘行业竞争格局,还能帮助企业发现自身的 ...
2024-11-27基础知识的建立 要想在数据分析领域脱颖而出,首先需要打好坚实的基础。 数据分析的基础知识十分重要,其中包括统计学、概率论、 ...
2024-11-27# 要学习Python数据分析 掌握Python基础知识 - 首先需要掌握Python的基础知识,包括基本语法、数据结构(如列表、元组、字典等) ...
2024-11-27学数据分析能在什么单位工作 数据分析的就业领域概述 数据分析专业毕业生广泛应用于各行各业,包括但不限于以下单位: 政府机关 ...
2024-11-27想学数据分析需要学哪些课程 数据分析学习路径推荐 基础课程: 统计学: 统计学作为数据分析的基石,涵盖概率论、描述性统计、 ...
2024-11-27# 现在什么行业发展前景最好 **人工智能与机器学习** - 人工智能技术快速发展,广泛应用于智能家居、自动驾驶等领域。 - 具备巨 ...
2024-11-27# 未来最有前景的行业 **人工智能与机器学习** - 人工智能被认为是未来最具潜力的行业之一,其应用范围广泛,包括智能家居、医 ...
2024-11-27