从支付宝数据分析网购消费者行为
没有消费者,交易便无法成立,对于商家而言,关于消费者的数据至关重要。曾经,获取一份消费者报告需要通过漫长而周密的调研,而随着电商的不断发展,数据量级不断增大,服务于商家的各种数据产品应运而生,获取消费者数据的方式变得更便捷,成本也更低。
这其中,支付宝数据是所有数据中最大的金矿。首先,支付宝数据基于真实的消费数据,或者说是基于每一笔真实交易产生的数据,相比较其他的消费者调研 数据更为可靠;其次,支付宝数据不仅仅包括淘宝,其用户群体更为广阔,可以说包含全领域电商的方方面面,其数据之丰富,是其他任何公司无可比拟的。
因此,《天下网商·经理人》、天下网商数据中心联合支付宝数据罗盘,从淘外商户数据入手,带来真实的支付宝淘外消费者网购数据报告,以飨读者。
特别说明的是,这些数据样本来自于2012年支付宝支持的除淘宝之外的电商网站,具有极高的参考价值。
网购消费者人口特点
1.网购消费者年龄分布:年轻人是网购主力
淘外电商网站30岁以下网购消费者占比超过六成,40岁以上网购消费者占比10%左右,可以看出目前网购消费者总体较为年轻。
2. 网购消费者地域分布:网购向三四线城市普及
目前淘外电商网站的消费者主要分布在一二线城市,占比达到67.9%。另据支付宝年度对账单显示,2012年四线城市的网上支付用户数增长64%,网上支付金额增长68%,均超过一二线城市。网购已经从发达地区开始向次发达地区逐渐普及,小城市的发展速度不容小视。
淘外电商网站消费者人数最多的省份是广东,上海、江苏、浙江、北京也进入前五。而根据CNNIC数据,2012年上海网民人数绝对值排名为全国第 13位,综合支付宝数据,可见上海网购渗透率非常高。网购消费者分布前五省份占比合计超五成,前十省份占比合计七成左右,可见网购消费者的地区集中度较 高。
网购消费者行为特点
1.购物网龄分布:四成以上消费者购物网龄在2年以下
淘外电商网站上四成以上消费者购物网龄在2年以下,其中2012年新增消费者占比,即购物网龄1年以下消费者占比达到23.4%,新增消费者较多。
2.购买频次:大多数消费者每个月仅网购一次
七成淘外电商网站消费者每个月仅网购一次,每个月网购3次以上消费者比例不足15%。对电商来说,增加消费者网购活跃度是一个重要问题。
3.网购时间分布: 消费者在工作日网购的热情更高
消费者在工作日网购的热情更高,周末网购的消费者明显减少。由于在周末或者节假日的时候,消费者可以更为自由地安排自己的时间,购物场景可能转移到线下,而在工作日,消费者没有大量的时间外出购物,所以更倾向于选择方便快捷的网购。
消费者网购时间与作息时间一致,购物时段主要集中在白天上班时间和晚上在家时间,其中白天上班时间购物热情会比晚上下班在家时间高,上下班途中和吃饭时间购物热情略有回落。商家可根据网购时间分布调整战术,更好地满足消费者的网购需求。
4.客单价分布:七成以上消费者网购客单价在200元以下
淘外电商网站客单价1000元以上的消费者占比达到9%,但是七成以上消费者网购客单价都在200元以下,可见,目前大多数消费者在网购中倾向于购买便宜的物品。
5.购物偏好:服装和饰品类目是所有人的最爱
不论男女,消费者最爱购买的前两位类目都是服装、饰品。家居用品是女性最爱购买的第三位类目,男性的第五位,可见女人比男人更爱买家居用品。3C数码是女性最爱购买的第五位类目,男性的第四位,可见男人比女人更爱买数码产品。
各年龄段购物偏好前两位的都是服装和饰品,但前五位购物偏好随着消费者年龄的增长会有一定变化。如家居用品是24岁以下消费者偏爱购买的第五位类 目,而从25岁开始,家居用品提升至第三位;对30~39岁年龄段的消费者来说,母婴用品进入了前五位,这个数据反映了网购人群中大多数人选择了晚婚晚 育。40~49岁消费者关注运动品类较多,运动进入这个年龄段购物偏好前五位。60岁以上消费者热衷于从网上购买食品,食品跻身其购物偏好前五位,网购食 品为没有年轻人行动方便的老年人提供了生活的便利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31