什么是大数据?其实我们每天都在贡献大数据
什么叫大数据?这个问题似乎离我们的工作生活有点远,但事实上真的远吗?要回答这个问题,我们首先要搞明白什么叫大数据。不去找什么百度知道,不去查什么维基百科,我们用最简单通俗的言词来描述:所谓大数据,不过就是体量达到我们难以想象的那样大的一大堆数据。这些数据的贡献者不是别人,正是我们自己,它们被存放在我们看不见、摸不着的云端。即便如此,却在无时无刻影响着我们的工作和生活。
大数据对企业来说是巨大的金矿
当你清楚地知道全世界智能手机用户喜欢哪些App,当你知道全世界PC用户用Google、用百度怎么搜索、搜索什么的时候,当你掌握了用户在PC端与移动端的使用习惯有什么差别之后,你是否能意识到这些资源对于移动互联网的价值有多么巨大呢?
全球单中国市场,手机的普及程度就已经达到了人手至少一部的程度,可以想象智能手机的市场是多么庞大。拥有一部智能手机只是一个开始,人们使用智能手机的数据收集才是关键,每个人每天至少会启动哪几个App,在每一个App内是如何进行搜索的,每个人在安装了某个App之后是否会卸载掉之前的同类App,等等这一切不光是证明大数据的“大”,同时也是展现了大数据的变化之“快”。
看到这里,你可能已经若有所思,如果掌握这些大数据的人是你,你会如何利用这些资源?于是,一个新的问题来了,当面对大到难以想象的大数据时,你是否具备分析处理它们的能力。谁都不能一口吃个胖子,即便都能塞得进嘴里,能不能咽得下去还的看你有没有那个本事。
这些看似难以想象的高科技玩意,会不会只是大数据分析的结果呢?
如果一家公司如果掌握了大数据,并且同时具备分析处理大数据的能力,那么市场对于这个公司来说就是透明的。但如果是聪明的公司,在这个基础上还会做什么呢?如果用Facebook来做参照物,就会意识到社交所带来的数据交叉性的价值所在,这也是大数据的另一处魅力所在。
简单总结一下,大数据应该具备规模巨大、数据增速快、数据之间交叉性强三大特征。垂涎大数据的公司,需要具备分析处理、有逻辑性提炼的能力。需要指出的是,并不是所有企业都拥有大数据,能够挖掘大数据价值的公司才具备生存的核心竞争力。
大数据对于消费者来说是笑面虎
说了这么多“废话”,可能大家已经不耐烦了,这和我们平时用手机到底有关系吗?答案是肯定的,当然有关系,而且关系还不是一般的大,只是还没有一个契机让我们感受到大数据的存在而已。
我们用手机的行为习惯只是大数据中的一种,也是和我们最密切相关的一类大数据。无论从体量大小、信息量增速快慢、数据间的交叉性哪一个角度来说,我们都在无时无刻地为大数据做着贡献。而这些数据,大多被搜索引擎、以及各种“云”上传到我们看不到的空间保存起来,接着被进行各种分析。从某种程度上来说,用户对于互联网来说,就是不折不扣的“肉鸡”。
没有人愿意做“肉鸡”,但我们又确实是不折不扣的“肉鸡”
无论你是用Android手机、苹果iPhone、诺基亚Windows Phone手机,还是各种大大小小的非主流系统,接入互联网无非就是浏览器和App两种主要途径。要不是“棱镜”事件,我们可能永远也想象不到原来大家其实都在裸奔,毫无隐私可言。
具体到智能手机,纵使Android体验再不如iOS,背后有谷歌搜索、Google+等等撑腰也秒杀一切。微软Bing(必应)搜索做的再烂,微软也始终不离不弃,同样说明大数据对于未来十几年、二十几年的重要性。苹果以2亿美元收购社交媒体数据分析公司Topsy(主要是分析Twitter),重点不在于社交本身、而在于社交所产生数据的价值。从这个层面来说,iPhone也仅仅是体验优秀的终端,未来依旧掌握在“大数据玩家”的手里。
当了解过大数据之后,背后有没有一丝凉意呢?
智能移动终端市场的全球性增长,中国4G终于在2013年底上马,预示着从2014年开始,大数据与云存储必将成为资本家争抢的香饽饽。既然作为“肉鸡”的我们无法逃避,那么至少在消费、使用的时候,能够保持清醒的分析与自我保护能力。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26