数据分析方法论:如何做实验研究
CEO:“这个月的销量下降了,小JAY,这个产品你负责的,找个策略吧。你肯定行(言外之意,不行炒了你)!”
小JAY:“好的,两周给您汇报结果!”
于是乎,小JAY开始忙活了了,销量这事,到底怎么个下降趋势,下降了多少,下降的节点。。。。。。怎么看?
没错,用事实说话,用数据说话!!
于是,小JAY和运营,销售那里将有关数据全部拿来,开始了漫漫的数据分析之路。
今天小JAY就带大家分析一下在数据分析中如何做实验。
数据分析的核心就是:通过比较法,理清因果关系。
常用的比较法就有观察分析和实验研究。观察分析就是将原始数据进行加工,经过数据分解,评估,最终得出结论的过程,优点就是省事方便,缺点也比较明显,主观性比较强,面对较真的上司,可能并不能说服她。实验研究则是对观察分析的补充和改进,在充分分析数据的基础上,进行实验研究进而得出更为有力的结论。
实验研究的核心同样是比较,但是要讲究方式。因为在一个问题的背后可能有一些不是数据能反应出来的因素,比如环境,人为等等不可控因素。因此要想找到可行高效的研究方法需要将这些杂质(数据分析中叫混杂因素)摒除掉,这样得出的结论才更为准确,鲁棒性更好。
为此,我们需要进行如下三部曲
下面依次说明一下每一个步骤的要点所在。
有时候上司说的话我们不能全信,但是要相信数据说的话。因此,对于老板提出的问题,我们要根据数据进行分析和确认。如果经过分析确实如他所说,那我们后期的努力起码方向不会错,而且也能按照上司的预期给出答案;否则就是一个吃力不讨好的活。
至于如何分析数据,确认问题,给出方案,这不是本文的重点,大家可以另行学习,这里不作赘述。
比如:这一步我们给出方案A和B。
所谓的控制组就是对该区域不做任何处理,将其作为标称对象,以便后期进行横向比较;
什么叫中间区域,什么叫两极区域?
我理解两极区域就是这个问题表现的最为严重和最不严重的两个区域。其他都可以称为中间区域。
为什么要做出这样的区分?
因为通常对于极端事物的出现必然有很明显的原因,根本不用作为实验对象,毫无意义。而且在极端区域,极端现象出现的原因很可能要远大于导致问题出现的真正的原因,所以,不仅研究这种极端现象毫无意义可言,而且还可能导致你的不出真正的解决方案,那你就out了!
比如在一个富人区,无论你的产品价值感有多么低,也不会出现什么销量下降的,因为钱对于他们来说根本不是问题。那你怎么实验都不会得出结论。或许你定价再高点,反而销量会更好,因为逼格更高了!!!!所以我们不能动它,无论它是销量高还是销量低,我将其作为比较对象即可。
中间区域则是最不能忽略的,就如同产品里面新手用户,中间用户和专家用户的分类一样,原因就不作表述了。
在中间区域做实验,一切就绪,但是一个区域毫无比较可言,高中做生物实验也要讲究控制变量法。那好吧,必须也要将实验区域分为实验组和控制组。
所谓实验组就是将中间区域按照解决方案的数量随机分开等份的组别,分别对两个区域应用解决方案A和B。
由于他们同属于一个大的区域,因此,混杂因素的影响是等同的,因此也就不必担心其他不可控因素带来对解决方案的负面影响。
说一千道一万,这是最重要的一步,也是检验成果,助你步步高升的一步。但是俗话说磨刀不误砍材工,因此前面几步的质量直接决定了解决方案的成效。解决方案要按照在试验区域的结果进行制定,对于那些极端区域,好的可以继续保持,坏的可以双管齐下,因地制宜啦。
bla了这么多,其实想说的就是在数据分析做实验阶段,最重要的是一个控制变量法,这真的是一把万能的钥匙,但是开锁的方式还是得自己选,你准备好了么?
数据分析咨询请扫描二维码
必备的职业技能 统计学基础 - 理解概率、假设检验、回归分析等统计概念。 - 运用统计方法对数据进行分析和解读。 编程能力 - 掌 ...
2024-11-27基础课程 - 统计学基础: 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识。这有助于分析师更好地理解数据背后 ...
2024-11-27数据分析领域涉及众多工具软件,涵盖了从数据处理、分析到可视化的各个方面。在选择适合自己需求的工具时,需要考虑数据规模、分 ...
2024-11-27在数据分析领域,选择合适的工具至关重要。不同的软件适用于不同的需求和技能水平。以下是几款值得考虑的数据分析软件: - Table ...
2024-11-27数据分析中常用的Excel与Python函数公式涵盖了广泛的应用场景。掌握这些基础和高级技巧对于成为一名优秀的数据分析师至关重要。 ...
2024-11-27Python是一种高级编程语言,由荷兰程序员Guido van Rossum于1989年圣诞节期间开始开发,并于1991年首次发布。Python的设计哲学强 ...
2024-11-27课程内容 数学基础: 高等数学、线性代数、概率论与数理统计、微积分等为算法设计和数据分析打下基础。 编程与算法: 掌握 ...
2024-11-27爬虫工程师是互联网时代中至关重要的职业之一,他们的工作内容主要涉及编写和维护网络爬虫程序,进行数据采集与清洗,设计系统架 ...
2024-11-27技能需求 数据管理与建模 - 掌握SQL、HiveQL、Spark SQL等数据库语言,进行复杂数据查询和分析。 - 使用数据建模工具如ER/Studio ...
2024-11-27技术技能 - 编程技能 - 掌握SQL、Python、R语言等编程工具是基本要求,可用于数据提取、清洗和分析。 - 数据分析与建模技能 ...
2024-11-27财务数据分析职业展望 - 需求激增: 随着企业信息化和数字化进程的加速,财务数据产生和积累速度急剧增长,推动了财务数据分析需 ...
2024-11-27技术技能 数学与统计技能:数据分析师需要具备扎实的数学基础,包括统计学、概率论、多变量微积分和线性代数等知识,以帮助理 ...
2024-11-27选择适当的工具和软件 选择恰当的工具对于创建出色的数据分析图表至关重要。Excel提供强大的数据可视化功能,R语言的ggplot2包 ...
2024-11-27初级市场分析师在工作中面临着重要任务之一:评估竞争对手的表现。这项工作不仅有助于描绘行业竞争格局,还能帮助企业发现自身的 ...
2024-11-27基础知识的建立 要想在数据分析领域脱颖而出,首先需要打好坚实的基础。 数据分析的基础知识十分重要,其中包括统计学、概率论、 ...
2024-11-27# 要学习Python数据分析 掌握Python基础知识 - 首先需要掌握Python的基础知识,包括基本语法、数据结构(如列表、元组、字典等) ...
2024-11-27学数据分析能在什么单位工作 数据分析的就业领域概述 数据分析专业毕业生广泛应用于各行各业,包括但不限于以下单位: 政府机关 ...
2024-11-27想学数据分析需要学哪些课程 数据分析学习路径推荐 基础课程: 统计学: 统计学作为数据分析的基石,涵盖概率论、描述性统计、 ...
2024-11-27# 现在什么行业发展前景最好 **人工智能与机器学习** - 人工智能技术快速发展,广泛应用于智能家居、自动驾驶等领域。 - 具备巨 ...
2024-11-27# 未来最有前景的行业 **人工智能与机器学习** - 人工智能被认为是未来最具潜力的行业之一,其应用范围广泛,包括智能家居、医 ...
2024-11-27