数据分析方法论:如何做实验研究
CEO:“这个月的销量下降了,小JAY,这个产品你负责的,找个策略吧。你肯定行(言外之意,不行炒了你)!”
小JAY:“好的,两周给您汇报结果!”
于是乎,小JAY开始忙活了了,销量这事,到底怎么个下降趋势,下降了多少,下降的节点。。。。。。怎么看?
没错,用事实说话,用数据说话!!
于是,小JAY和运营,销售那里将有关数据全部拿来,开始了漫漫的数据分析之路。
今天小JAY就带大家分析一下在数据分析中如何做实验。
数据分析的核心就是:通过比较法,理清因果关系。
常用的比较法就有观察分析和实验研究。观察分析就是将原始数据进行加工,经过数据分解,评估,最终得出结论的过程,优点就是省事方便,缺点也比较明显,主观性比较强,面对较真的上司,可能并不能说服她。实验研究则是对观察分析的补充和改进,在充分分析数据的基础上,进行实验研究进而得出更为有力的结论。
实验研究的核心同样是比较,但是要讲究方式。因为在一个问题的背后可能有一些不是数据能反应出来的因素,比如环境,人为等等不可控因素。因此要想找到可行高效的研究方法需要将这些杂质(数据分析中叫混杂因素)摒除掉,这样得出的结论才更为准确,鲁棒性更好。
为此,我们需要进行如下三部曲
下面依次说明一下每一个步骤的要点所在。
有时候上司说的话我们不能全信,但是要相信数据说的话。因此,对于老板提出的问题,我们要根据数据进行分析和确认。如果经过分析确实如他所说,那我们后期的努力起码方向不会错,而且也能按照上司的预期给出答案;否则就是一个吃力不讨好的活。
至于如何分析数据,确认问题,给出方案,这不是本文的重点,大家可以另行学习,这里不作赘述。
比如:这一步我们给出方案A和B。
所谓的控制组就是对该区域不做任何处理,将其作为标称对象,以便后期进行横向比较;
什么叫中间区域,什么叫两极区域?
我理解两极区域就是这个问题表现的最为严重和最不严重的两个区域。其他都可以称为中间区域。
为什么要做出这样的区分?
因为通常对于极端事物的出现必然有很明显的原因,根本不用作为实验对象,毫无意义。而且在极端区域,极端现象出现的原因很可能要远大于导致问题出现的真正的原因,所以,不仅研究这种极端现象毫无意义可言,而且还可能导致你的不出真正的解决方案,那你就out了!
比如在一个富人区,无论你的产品价值感有多么低,也不会出现什么销量下降的,因为钱对于他们来说根本不是问题。那你怎么实验都不会得出结论。或许你定价再高点,反而销量会更好,因为逼格更高了!!!!所以我们不能动它,无论它是销量高还是销量低,我将其作为比较对象即可。
中间区域则是最不能忽略的,就如同产品里面新手用户,中间用户和专家用户的分类一样,原因就不作表述了。
在中间区域做实验,一切就绪,但是一个区域毫无比较可言,高中做生物实验也要讲究控制变量法。那好吧,必须也要将实验区域分为实验组和控制组。
所谓实验组就是将中间区域按照解决方案的数量随机分开等份的组别,分别对两个区域应用解决方案A和B。
由于他们同属于一个大的区域,因此,混杂因素的影响是等同的,因此也就不必担心其他不可控因素带来对解决方案的负面影响。
说一千道一万,这是最重要的一步,也是检验成果,助你步步高升的一步。但是俗话说磨刀不误砍材工,因此前面几步的质量直接决定了解决方案的成效。解决方案要按照在试验区域的结果进行制定,对于那些极端区域,好的可以继续保持,坏的可以双管齐下,因地制宜啦。
bla了这么多,其实想说的就是在数据分析做实验阶段,最重要的是一个控制变量法,这真的是一把万能的钥匙,但是开锁的方式还是得自己选,你准备好了么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31