图论是理解大数据的关键吗
现在大数据成为一个热门话题, 然而无论是网页, 产品信息, 车辆的功能, 文本, 病例还是气象等数据, 对数据的理解的第一步就是要理解数据之间的关联。利用图论, 我们将能够进一步提高我们对数据的理解能力,同时构建和分析图论模型将使得我们能够自动获取答案。本文我们将以搜索引擎为例介绍图论在大数据分析中的作用:
如今, Google已经成为了很多人日常生活中不可或缺的一部分,这个搜索引擎巨头通过围绕在它的核心能力也就是对互联网的索引, 把一系列服务整合起来提供给用户。
Google的网络爬虫和PageRank算法使得人们搜索网络的方式发生了革命性的变化。 通过对网页链接数量和重要性的分类, Google能够比竞争对手更快地提供更加相关的信息。
网站和网站之间的链接组成了一个图, 这不是我们通常所说的可视化的图, 而是一种用来表示每个网页如何与其他网页发生关系的模型。
PageRank算法就是采用这种模型来判断一个网页的重要性的。一个网页拥有越多的外部链接, 它的重要性就可能越高, 如果一个网页被更多的权威信息源所引用, 那么这个网页的重要性也就越高。 Google搜索引擎的搜索结果一般来说比竞争对手要更快更好, 就是因为它的算法涵盖了互联网页面之间的绝大部分链接。
把类似的想法应用到其他数据上, 来分析数据之间的关联, 也能够揭示一些数据背后的本质。 告诉我们哪些是相关的, 哪些是重要的。
图论就是研究数据联系的模式
要理解我们如何从数据中得出答案, 我们需要了解我们传统上是如何与数据打交道的。几乎所有的试图从数据中寻找答案的过程都是通过搜索实现的。
搜索首先总是从提出问题开始的。 我们把已知的与数据联系的越好, 我们提出的问题就越可能找到答案。 比如说, 如果你找不到你的钥匙,可能你会问:”我的钥匙在哪里?”。 不过, 这可不是一个容易得到答案的问题。它太宽泛了。 而如果你问:“我的钥匙是不是掉在收银台了?” 这个问题比第一个问题要具体一些。 如果你的钥匙在收银台, 那这个问题就是一个好的问题。如果不是的话, 这个问题也不是个好问题。
对数据库的查询与上述方式类似。 要想得到你想要的结果, 你需要构造一个与你的数据相关的查询条件。 你可以使用的查询语句不计其数, 但是只有少部分能够让你得到你需要的答案。
这样的情况才是数据科学的真正难点所在, 也是为什么好的分析师凤毛麟角的原因。 最好的数据科学家是那些既懂得数据, 又懂得那些提出正确问题的人。
如果把互联网看成数据集的话, 那么搜索引擎就是你的查询工具。
几十年来, 搜索引擎都在抓取网络信息, 索引网页以便能够被搜索到。 通过构造不同的搜索条件, 用户可以得到不同的结果。 搜索引擎服务商们不断的改进他们的产品。然而搜索引擎的真正创新出现在2000年左右。
当时, Google的PageRank算法通过对每个链接以及其链接的内容进行建模。通过图论建模, Google把网页之间的联系进行了量化, 以帮助用户更快地获得相关的结果。 这一算法使用了网页之间的关系来提高搜索结果的质量。 而无论哪种搜索引擎, 用体提供的搜索条件描述性越好, 就越能够得到好的结果。
你的搜索条件与Google的PageRank算法之间建立了一个联系。而Google通过图论建模,建立了一个你的搜索条件与相关页面之间的联系。 如果没有关于相关页面和链接的模型, Google就需要更精确的搜索条件才能得到满意的结果。 然而, 即便是采用更先进的搜索技术, 现在的数据问题也会使得构造一个正确的查询条件变得困难。
现在大数据成为一个热门话题, 然而无论是网页, 产品信息, 车辆的功能, 文本, 病例还是气象等数据, 对数据的理解的第一步就是要理解数据之间的关联。认同这一点的话, 就能够理解为什么图论在将来能够为人们的数据分析提供思路。
今天, 我们对数据的很多分析和研究方式已经被图论深深地影响了。 而在未来, 利用图论, 我们能够进一步提高我们对数据的理解能力。 构建和分析图论模型将使得我们能够自动获取答案。当我们把数据自己联系起来的时候, 数据中隐藏的答案会自己出现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30