“每天一个数据分析师”第16期内容奉上,请享用
原创内容 转载请注明来源
人物档案
王润烨,学统计出身,大学期间接触到数据分析,并参与实施了一些项目,结识了许多从事数据分析和挖掘的朋友。环境使然,他自己也成了数据分析师,目前就职于杭州追灿数据。
DA:请您介绍一下自己的工作经历,目前的工作职责,工作中曾做过的数据分析实例,以及您的职业规划?
王润烨:追灿的团队专注于通过大数据挖掘创造价值,积累了多年的数据分析与数据挖掘经验,团队的积累给了我一剂强力助推剂,让我快速的成长。刚开始我专注做电商的精准营销、关联销售、客户价值等业务方面的数据支持,冲在业务一线让我学会如何将业务需求与专业技能结合。
现在,我主要从事具体业务需求的数据建模工作。目前,追灿数据应用领域从电商拓展到智慧城市、智慧农业、智慧工业等,我希望自己能深入进行这些领域的数据工作,让数据应用最终惠及每个人的生活。
DA:能否给我们讲讲您在工作中遇到的印象深刻的困难及其背景成因?
王润烨:我们团队在为某传统蜂蜜品牌做电商分销渠道分析时发现,电商平台上蜂蜜产品非常多,低端市场难以快速打开局面,高端市场又被进口品牌抢占,可以说电商蜂蜜市场竞争十分激烈。如果以直接销售的形式进入市场难以达到理想目标。
DA:如何解决这个问题呢?能否请您向广大同行分享下思路?
王润烨:我们转变了思路,转而去做相关行业的分析挖掘,大家都知道啤酒尿布案例吧,我们也是这么干的,使用了FP-growth算法来进行关联分析。
我们获取了淘宝全网数据,找出了客户同时购买蜂蜜和其他产品的交易数据,并依此建立了事务数据库。依据设定的最小支持度阈值,我们根据以下思路进行分析。
1.频繁项集产生:其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集。
2.规则的产生:其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则。
具体步骤为可分为:
a.扫描一遍数据库,获取所有频繁项,删除频率小于最小支持度的项。在此操作的过程中,还可以得到每个项的出现频率,供后续步骤使用。
b.第二次扫描数据库,在第一次处理完成的结果基础上,构建 FP-Tree。
c.得到了 FP-Tree 树之后,再遍历整棵树获取满足一定置信度的关联规则。
经过分析发现购买蜂蜜的客户同时购买滋补营养品、美容护肤、零食、保健品、个人护理等高达 70 多个类目的产品。也就是说, 这 70 多个类目的客户都是蜂蜜产品的潜在消费者。
其中茶饮类目关联最强,而在茶饮类目中,花茶在功效上与蜂蜜最搭。找到花茶类目之后,我们再分析了一下客群的消费习惯,大概都是消费能力和消费观念都很前的年轻人。有了这些数据支撑,我们再对产品进行价格和包装定位,卖花草茶的分销商在一个月销量就排在蜂蜜销售页面前列了,这也大大带动了旗舰店的流量提升。
DA:您可否推荐一些平时充电学习专业知识的平台或途径?
王润烨:经管之家,我也经常会进去逛,里面有许多很专业的人,而且里面的人都很活跃,大家也非常热心,有许多分享和心得。如果你想充电,这是个不二选择。
https://www.coursera.org/,免费的公开在线课程项目,与全世界最顶尖的大学和机构合作,提供任何人可学习的课程。如果你的英文还不错,可以进去瞧瞧。
其实国内也有一些不错的公开课,比如网易公开课和腾讯课堂。
DA:您对希望从事数据分析行业的人有哪些建议?
王润烨:一个数据分析师,最重要的不是他的技术,而是他的思考方式。
数据分析师相对数据,其实统计知识的要求没有很高,在数据分析层面上,大多只是做一些描述性的分析,也许会用到一些统计模型,但也只要求知道一些基本的概率论与数理统计方面的知识。数据分析师在做数据分析时,最重要的还是具有业务上的眼光。当然,除了商业嗅觉之外,你也要有优秀的学习能力。现在是大数据的时代,大数据人才的要求可是非常严格的,不仅需要有深厚的统计知识,还需要强大的技术能力,你要能玩转主流的大数据分析工具。你以为这样就足够了,你还必须要有良好的沟通合作能力,一个人的能力毕竟有限,团队的力量远远比个人强得多。因此,对于一个从事数据分析行业的人来说
1.不要脱离业务实际,架空的分析是没有用的
2.整理好数据非常重要,好的数据只用简单的算法也能得到很好的效果
3.思维一定要清晰,最好做个流程图
4.选择算法时要比较,不要有先入为主的概念
5.要多和共事的同事交流,能学到不少东西
6.多学习掌握一些数据分析的工具
7.活到老,学到老,技术发展的太快,不要盲目自信
DA:您如何看待数据分析师行业的就业前景及未来发展?
王润烨:很庆幸,大数据正迎来黄金时代。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。目前随着各行各业的不断发展,数据分析行业涉及的领域正由最初的投融资项目分析转向为企业经营、电商产业、游戏等服务。照此发展,相信不远的将来,中国的数据分析行业一定也会发展到行业精细化的程度。数据分析师或将成为职场新宠。
王润烨留下了自己的邮箱:wangrunye@e-corp.cn,您可以与他沟通,或者在微信直接提问。
想要接受访问的小伙伴可以发送邮件至songpeiyang@cda.cn,“姓名+单位+职务”,或者微信添加CDA为好友(ID:joinlearn),拉你如500人数据分析师交流群,期待你来~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31