文 | 宿痕
来源 | 知乎
过去的运营体系弊端:
过去运营的方式存在几个比较严重的问题:1)运营模式比较单一,很难适应互联网快速变化的节奏,不能及时根据市场和用户的变化作出调整。比如双十一、828、双12、黑色星期五等;2)摸不清自己的用户,不清楚自己产品的老用户是谁、什么习惯,也没有针对的运营来拉动新用户,导致最后很难挽留住用户。比如我做移动电台,我的用户群体是谁,他们一般都是在什么场景使用,他们都是从什么渠道关注到我们的产品,他们使用的怎么样,他们有什么使用不习惯的地方;3)没有清晰的KPI指标,运营团队没有明确的KPI指标,拍脑袋决定业务发展需要达到的标的。比如我们今年希望做到多少用户量下载、多少使用量、多少活跃用户、多少场景应用。
认识数据化运营:
虽然目前企业界和学术界没有对“数据化运营”的定义有比较明确的达成共识,但这并不影响企业界的数据化运营战略的部署和实施。从基本要素和核心来看,“数据化运营”主要指的是“以企业级的海量数据存储和分析挖掘应用作为核心支撑的,企业全员参与的,以精准、细分和精细化为特点的企业运营制度和战略。”
数据化运营主要针对运营、销售、客服等部门的互联网运营的数据分析、挖掘和支持上。具体包括“产品流量的监控分析、目标用户行为研究、产品营销策划推广、用户画像分析、产品UE优化、竞争对手监控与分析、企业运营成本风险与管理等”。通过可量化、可细化、可预测等一系列精细化的方式来进行。
数据化运营的步骤:
BAT的数据化运营体系:
从BAT的数据化运营体系可以归结为六个层级,围绕数据平台建设的:数据规范、数据仓库、产品数据规范、产品ID、用户ID和统一SDK;围绕数据报表可视化的输出,包括数据地图、数据门户;对数据进行的精细化加工,关于用户的画像、行为、特征加工分析和挖掘;结合具体的应用场景的数据运营体系,在阿里妈妈做广告推荐,在微信做公众号、朋友圈推荐,在搜索关键词做SEM推荐;围绕数据和应用,所展开的各类数据产品;通过数据影响到战略分析和决策。
图(1) 数据化运营体系
一、数据平台建设
数据平台建设听起来是高大上的事情,但事实上是个事无巨细的工作。比如数据零散,各部门都掌握着自己的数据,而无法做到共享和管理;数据的不连贯,前员工走了,后面的人没有承接,数据做了一半就没有了,业务也相应的没有历史回顾和对比;数据口径的不一致,DAU、PCU、WAU、MAU、按天留存率(1-30日留存)、累计留存率(7日、14日、30日累计留存率),新增用户,有效新增用户,活跃转化率,付费转化率,收入指标,ARPU人均收入,渠道效果数据这些指标每个部门、每个人都有不同的定义和计算口径;数据没有完善的维护,杂乱的数据没有前后血缘关系的联系,没有对应的同学来承接维护
二、标准化的数据报表和可视化配置
建立完善的数据平台后,需要面临到数据开放的问题。对数据进行标准化后的产品的数据报表和可视化,对数据进行统一的管理,所展示的内容有数据的血缘、数据的owner、数据的每天产入产出、数据基本统计、数据的健康度等等。
如腾讯的数据门户:
阿里的在云端:
三、数据分析与挖掘
对数据的精细化加工,建立数据特征标签后更多的是对数据的分析和挖掘应用。
常用分析工具:EXCLE,SPSS,SAS,Enterprise Miner,Clementine,STATISTICA。个人用的比较多的是:EXCEL和SPSS。而BAT更多的是结合这些公司开发自己的数据分析平台和数据挖掘算法平台,但思路方法基本上类同。
数据分析思路包括:
1)事前分析:
如何预测各类指标
如何建立考核指标
支持的决策
精细化运营
2)事中分析:
实时监控效果
实时反馈和分析原因、调整
3)事后分析:
回顾分析效果、原因、优化
如何指导下一步的战略调整
常见的数据分析方法:
交叉分析、对比分析、预测分析、关联分析、聚类分析、对应分析、相关分析、因子分析等。
四、数据运营体系
主要的平台逻辑多数是进行用户细分,商品和服务细分,通过多种推荐算法的组合优化进行商品和服务的个性化推荐。另外还有针对不同产品生命周期,用户生命周期构建的产品数据运营体系。
腾讯用到一个很重要的方法,即用户生命周期管理办法。这也是社交网络事业群正在力推的一个很重要的方法论。
什么叫用户生命周期管理?传统营销学讲的是客户生命周期管理,因为腾讯社交群主要客户就是用户,所以腾讯叫用户生命周期管理。但是传统的对应的理论是客户生命周期管理,简称CLM。《王永庆传》提到一个一个米店老板怎么做生意,他每天会收集顾客用米的情况,包括家里有多少成员,然后能估计到他每天吃多少米,然后推算出这个家庭什么时候能把米吃完。比如买10公斤大米,估计是半个月,到快吃完时,他就会主动送货上门,或者主动打电话。他用这种办法赢得了客户。很快他的经营网络就超过了其他店。
而阿里通过成立数据委员会,通过不同部门的数据分析师和算法工程师建立不同业务的数据分析可视化报表、数据推荐平台。
五、数据产品
以BAT三家公司的数据产品为例进行分享。
腾讯:广点通、信鸽
阿里:数据魔方、淘宝情报、淘宝指数、在云端
百度:百度预测、百度统计、百度指数、百度司南、百度精算
六、战略
一定要强调的是数据≠战略!数据是客观的,是死的,是不会自己主动分析的。更人是感性的,是有经验的,有自己的判断的。只有结合数据来辅助我们,理性分析,才能做出更为可量化、可细化、精准化的KPI和战略目标。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26