
数据分析师用r语言做数据分析的时候会很多,也有很多数据分析师对于用r语言不是很了解,下面就谈论一下?
线性回归简介:如下图所示,如果把自变量(也叫independent variable)和因变量(也叫dependent variable)画在二维坐标上,则每条记录对应一个点。线性回规最常见的应用场景则是用一条直线去拟和已知的点,并对给定的x值预测其y值。而我们要做的就是找出一条合适的曲线,也就是找出合适的斜率及纵截矩。
SSE & RMSE
上图中的SSE指sum of squared error,也即预测值与实际值之差的平方和,可由此判断该模型的误差。但使用SSE表征模型的误差有些弊端,比如它依赖于点的个数,且不好定其单位。所以我们有另外一个值去称量模型的误差。RMSE(Root-Mean-Square Error)。
由N将其标准化,并且其单位与变量单位相同。
案例
许多研究表明,全球平均气温在过去几十年中有所升高,以此引起的海平面上升和极端天气频现将会影响无数人。本文所讲案例就试图研究全球平均气温与一些其它因素的关系。
本例我们以1983年5月到2006年12月的数据作为训练数据集,以之后的数据作为测试数据集。
数据
首先加载数据
temp <- read.csv("climate_change.csv")
数据解释
Year 年份 M
Month 月份 T
emp 当前周期内的全球平均气温与一个参考值之差
CO2, N2O,CH4,CFC.11,CFC.12:这几个气体的大气浓度 Aerosols
模型选择
线性回归模型保留两部分。
"数据分析师'选择目标feature。我们数据中,有多个feature,但并非所有的feature都对预测有帮助,或者并非所有的feature都需要一起工作来做预测,因此我们需要筛选出最小的最能预测出接近事实的feature组合。
确定feature系数(coefficient)。feature选出来后,我们要确定每个feature对预测结果所占的权重,这个权重即为coefficient
结合实例选择模型
初始选择所有feature
选择所有feature作为第一个model1,并使用summary函数算出其Adjusted R2为0.7371。
model1 <- lm(Temp ~ MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols, temp) summary(model1)
逐一去掉feature
在model1中去掉任一个feature,并记下相应的Adjusted R2如下
Feature |
Adjusted R2 |
CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.6373 |
MEI + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.7331 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.738 |
MEI + CO2 + CH4 + CFC.11 + CFC.12 + TSI + Aerosols |
0.7339 |
MEI + CO2 + CH4 + N2O + CFC.12 + TSI + Aerosols |
0.7163 |
MEI + CO2 + CH4 + N2O + CFC.11 + TSI + Aerosols |
0.7172 |
MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + Aerosols |
0.697 |
MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI |
0.6883 |
本轮得到Temp ~ MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols
从model2中任意去掉1个feature,并记下相应的Adjusted R2如下
Feature |
Adjusted R2 |
CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.6377 |
MEI + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.7339 |
MEI + CO2 + CFC.11 + CFC.12 + TSI + Aerosols |
0.7346 |
MEI + CO2 + N2O + CFC.12 + TSI + Aerosols |
0.7171 |
MEI + CO2 + N2O + CFC.11 + TSI + Aerosols |
0.7166 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + Aerosols |
0.698 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI |
0.6891 |
任一组合的Adjusted R2都比上一轮小,因此选择上一轮的feature组合作为最终的模型,也即Temp ~ MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols
由summary(model2)可算出每个feature的coefficient如下 。
线性回归介绍
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
上面这段定义来自于维基百科。
这个错误估计函数是去对x(i)的估计值与真实值y(i)差的平方和作为错误估计函数,前面乘上的1/2m是为了在求导的时候,这个系数就不见了。至于为何选择平方和作为错误估计函数,就得从概率分布的角度来解释了。
如何调整θ以使得J(θ)取得最小值有很多方法,本文会重点介绍梯度下降法和正规方程法。
梯度下降
在选定线性回归模型后,只需要确定参数θ,就可以将模型用来预测。然而θ需要使得J(θ)最小。因此问题归结为求极小值问题。
梯度下降法流程如下:
1. 首先对θ赋值,这个值可以是随机的,也可以让θ为一个全零向量。
2. 改变θ的值,使得J(θ)按梯度下降的方向进行调整。
梯度方向由J(θ)对θ的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向。更新公式为为:
这种方法需要对全部的训练数据求得误差后再对θ进行更新。(α为学习速度)
正规方程(Normal Equation)数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07