民机客服工程的大数据应用
大数据技术正深刻影响着民机产业链的上下游,工业大数据缘起国外,在民机领域大数据应用发展较快,而在国内民机客服工程领域也有所突破。
大数据属于数量大 (Volume)、输入和处理速度快 (Velocity)、数据多样性 (Variety)和价值密度低 (Value) 的复杂、海量信息,无法用传统工具处理分析。大数据可分为三类:一是社交类数据,记录用户行为、反馈数据等;二是商业类数据,包括消费者数据、ERP数据、库存数据以及账目数据等;三是工业类数据,又称机器和传感器数据,包括智能仪表、工业设备传感器、呼叫记录、设备日志等。
目前工业大数据形成了以“工业互联网”为代表的美国模式、“工业4.0”为代表的德国模式和“两化融合”、“互联网 ”为代表的中国模式。
工业大数据作为大数据体系的分支,与其既有共通性,又有特殊性。在共通性方面,都是基于海量数据、分析技术和大数据思维三要素,"数据分析师"以预测为核心,以模型和算法为关键。
客服工程数字化的内在驱动是大数据
当前的民用客机研制不但在传统工程技术体系内追求突破创新,更注重从服务客户角度对产品设计方案实施再开发,即“民机客服工程”。客服工程是对产品定义的开发补充,是对产品使用性能的技术创意,它把产品操作和维修等固有特性转化为外在表现,从而构建起产品全生命周期持续安全健康运行的基础。从技术角度看,民机客服工程更多地使用数理统计和逻辑判断工具,更注重大数据在飞行效率、健康管理等领域的应用。
大数据应用的关键技术分析
数据分析师从数据源获取到产生最终价值,一般经过数据的采集准备、存储管理、计算处理、数据分析和知识展现等五个主要环节。相对于传统挖掘技术,大数据分析的技术突破主要集中在存储管理、计算处理和数据分析三个核心环节。在民机应用方面,又涉及工业物联网、航空电信网等关键技术。
"数据分析师"面对海量数据,传统存储技术一方面是存储和计算物理分离、易受I/O瓶颈制约,另一方面是数据数据冗余、扩展、容错和并发读写能力不足。谷歌文件系统(GFS)和Hadoop分布式文件系统(HDFS)在物理上将计算和存储节点结合在一起,避免了数据密集计算时的I/O堵塞;采取分布式存储架构,以提高并发访问能力,在大文件存储上的表现优异。随着应用和需求的发展,内存型数据库在提高随机、海量小文件频繁读写方面表现优异。
传统关系型数据库采取结构化数据管理方式,优点是数据一致性强,缺点是容差性、并发性较弱。谷歌Big Table和HadoopHBase等新型非关系数据库(NoSQL)通过“键-值”(Key-Value)对、文件等非二维表,提供了处理多源多类非结构化数据的解决方案,由于只关注结果一致性,不追求过程一致性,效率也充分提升。谷歌推出Spanner数据库,可在全球部署100万~1000万台服务器的超大存储系统,通过原子钟进行全局精确同步,在非关系型数据库基础上实现一致性,同时还支持SQL接口,体现两种数据管理技术融合发展的方向。
并行计算关键技术
传统高性能计算的特点是“数据简单、算法复杂”,大数据是典型的数据密集型计算,更重视计算单元和存储单元间的吞吐率。谷歌的MapReduce并行计算技术,通过廉价通用服务器组建系统、添加服务器节点线性扩展系统处理能力,成为应用最为广泛的大数据计算平台。基于MapReduce,业界又发展出多种并行计算技术:一是“边到达边计算”的流计算,如Yahoo的S4和Twitter的Storm;二是针对大规模图数据进行优化的图计算,如谷歌的Pregel;三是将MapReduce内存化以提高实时性的内存批计算, Spark;四是可秒级处理PB级数据的快速交互分析,如谷歌的Dremel。2013年,Hadoop社区推出的将任务调度和资源管理分离、适合多种计算模型的通用MapReduce架构YARN,现已发展成为大数据计算平台的公认标准。
大数据分析技术路线先凭借先验知识人工建立数学模型分析、而后通过大量样本数据进行机器学习。2006 年,谷歌等公司提出增加人工神经网络层数和神经元节点数量,构建深度神经网络以提高训练效果,并在后续试验中得到证实。基于深度神经网络的机器学习技术在语音识别和图像识别等方面取得了较好效果。
工业物联网
工业大数据离不开工业物联网的支撑。第一代工业物联网以模拟信号单向传递为主,布线复杂、抗干扰性差。第二代工业物联网以数字分布式控制系统为代表,信号精度提高但网络实时性和稳定性不足。第三代工业物联网突出现场总线控制,采用全数字、开放式双向通信网络将各控制器与设备互连,而更为便捷、低廉的工业以太网已开始取代现场总线技术。第四代工业物联网的特点是无线传感和通信,突破传统分层控制体系,形成制造、管理、分析、服务的全网一体化架构,同时还具备现场设备感知、实时微处理微计算、微秒级快速响应和复杂环境下稳定传输等能力。
航空电信网
航空电信网(ATN )是基于国际标准公共接口服务和协议,集成地面、地空和航空等多种数据子网,以实现统一数据传输服务的全球空地一体化航空专用通信网络。ATN最大的转变是从面向字符传输到面向比特传输,是未来实现航空大数据实时分析的基础通信保障。ATN主要由通信子网、ATN路由器和终端系统组成。其中ATN通信子网一般由机上子网、空地子网(如甚高频地空数据链、二次雷达S模式、 卫星通信、高频地空数据链等)和地面子网三种形式的数据通信网络组成。而ATN异质网际间的数据传输,则由ATN路由器实现。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31