
小白学数据分析:怎么做流失分析
最近看了很多关于流失分析的文章,也构建了一些模型,流失这个问题看似有些让人抓不住一根主线来做,这几天也有几个朋友问我"数据分析师"怎么来做流失的分析,但是最近工作变动,外加上很忙,就没有很好的跟他们说说这个问题。说到流失分析,很多人都知道使用决策树算法,C5.0、Chaid、Quest或者贝叶斯,也有用聚类分析的,总的来说流失分析的方法很多,但这些都是技术层面的,也算不上是一个流失模型。
前几天看到一篇文章来讲述怎么分析永恒之塔的流失,方法和过程真的很不错,不过流失分析远比这个还要多,其原因在于,那篇文章中,作者是选取了1-10级的新手作为研究对象,而实际上,流失分析面向的对象不仅仅就是新手(废话,谁都知道!),这句话是句废话,现在看,做数据分析的都明白,然而一旦真的做数据分析,研究流失率时,往往就忽略了我们要对那些人进行流失分析,眉毛胡子一把抓。
早先写过一篇关于流失分析设计的文章,但是后来反映设计的过于复杂和繁琐,没必要这么分析。其实,我觉得很有必要。流失分析不是你信手拈来就开始做你的流失分析的。在之前的文章中,主要设计的是历史用户的流失分析方式,把历史用户的流失分成了留存、沉默、流失、回流、植物等几类情况,实际上这种分类的形式是由玩家的游戏生命进程(生命周期)决定的,原因我觉得有以下几点:
正如文章所言,流失分析很多情况下只是告诉你谁会流失,流失的人有什么特征,而这两点对应的是流失分析的两个方面:
1. 谁会流失->流失用户的预测,告诉你流失的可能;
而流失分析最终的目的是通过这两点,仅仅结合业务分析流失的原因(再好的算法,模型不会告诉你原因),而解决了谁会流失,流失特征,流失的原因,那么就可以进行挽留措施的实施,到此一个完整的流失分析闭环才形成。
形成闭环的原因在于,新的一批用户会继续检验我们的流失分析模型,我们希望在同样的游戏进程时期或者状态下,能够通过不断的修正模型,使之具有普适性。这样的一些模型最后组合起来,就可以比较全面的描述玩家不同的游戏生命进程的流失特征。当然这需要不断的实验和分析,因为用户的质量也是要考虑的。最后,建立在反复使用模型分析的基础上,得到显著性的模型框架。
而这个过程中,值得我们注意的是,往往我们很多时候做的是这其中一小部分,而我们恰恰把这一小部分放大认为是流失分析的全部,比如我们做了40级-50级的流失用户,找出流失用户可能性,流失特征,但是往往忽略做一些挽留的措施,挽留的措施有的是软性的,比如通过活动,奖励等实施,也有通过更改系统设计来弥补,但是这要看你"数据分析师"做的流失分析用户流失的严重程度,换句话说如果这一阶段的流失是一部分客群引起的高流失,而这部分客群不代表我们整体客群(流失客群的特征与之前历史客群在该阶段流失特征不符合,那么这就不是系统设计的因素造成的),此时就不能轻易使用更改系统设计的办法,多数情况下采取软性的手段,帮助用户过度。
然而,回头来看,站在一个高度来看我们是根据了玩家的游戏进程到什么阶段(处于的状态)来确定我们的流失分析对象和方法的。
看了永恒之塔的流失分析我发现,之前的针对新手的流失分析没有深入的做过研究,PRARA模型关注的很多也是用户保有留存的问题,可以看得出一批新用户,我们关注更多的是留存问题,而那些历史用户我们"数据分析师"关注的流失问题。
针对用户流失的设计我们"数据分析师"大概有月流失,周流失,沉默,然而我们"数据分析师"在这块的分析远远没有达到一个高度,毕竟我们的收入主体还是来源于这些历史用户,本身来说付费转化,游戏学习成本都很低了,专注这些用户,做好挽留发挥的效益更大。
然而新用户正如文章也提及的情况,新用户对游戏的学习,操控,熟悉还不完全,即使我们获取了信息,流失特征,流失可能性,大概我们想找出来玩家为什么还是会离开难度就会比较大,即使我们有最好的新手体验流程和新手缓冲期,但不能避免的用户流失(当然这不是说新用户的留存、流失分析不重要)。然而反过来当玩家游戏生命周期进入稳定期或者提升期,却面临了很大的流失,那么我们获取流失特征,分析流失可能性,最后做出挽留得到的效益远远大于新手的流失分析。
说了上面这句话大概看到的人会笑,会喷我,补充一句的是,一个游戏就像一个池子,有进水口,也有出水口,我们"数据分析师"希望进水口大,出水口小,然而进水口再大,你不进水,有一天出水口也会让池子干涸,因此控制出水的同时,也要想办法做好进水口,也就是如何做好新玩家的分析,预测,挽留。因为留下的新玩家有一天也会变成我们定义的老用户,进而变成我们要设法挽留的老用户。每个玩家在游戏中都是有生命周期的,流失分析的目的是拉长这个周期的同时,将价值发挥到最大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09