Google Analytics存储了全球范围内网站的大量静态数据,随着数据体积越来越大,检索的难度也必然随之增加。近日,Gen Furukaw在Dzone上撰文表示,Google Analytics的高效一定程度上归功于其兼职存储BigTable。
以下为译文
在Google,随时都可能存在大量应用程序被添加到其基础设施,而这些应用程序中,任意一个都可能给系统带来繁重的工作负载。迎合这样的资源需求并不简单,而在有限时间内做到这一点就更是难上加难了。
如果Google部署的是一个单节点上的传统数据库,那么一旦达到容量限制,他们必须为其更新硬件。鉴于Google应用程序的数量和存储数据的体积,这种硬件升级可能每天都会进行一次。虽然负载也可以分配到多个节点,但随着节点数的增加,系统维护的难度将变得不可思议。
综上所述,鉴于大规模系统升级和维护的难度,标准关系型数据库对Google来说并不可选。
寻找一个可扩展解决方案
为了保证速度,及避免频繁的更新硬件,Google定制了自己的存储解决方案——BigTable。取代关系型数据库将数据存放到表格中,BigTable使用了多维排序映射的方式对数据进行存储,也就是现在我们所说的键值存储类型。这种方式不仅提升了性能,也简化了扩展过程。
关系型数据库中的信息存储
关系型数据库将信息的每个部分都存放到独立的位置,通常是表中的一列。同时,在关系型数据库中,数据的规范化非常重要,这个过程保证了其他表格或者列中不会存在冗余数据。
举个例子,客户的“姓”必须存放在某个表格的对应列中。如果某个客户的姓在其他位置发现,那么它将被删除,信息的检索仍然会被指定到原始表格。
这种结构的缺点是数据库内部可能变得非常复杂,从而导致即使一个简单的查询都可能涉及到大量的执行路径,而所有这些路径都会在运行时进行计算以寻找最优路径。数据库越复杂,运行时就需要越多的资源来确定查询路径。
键值存储中的信息存储
在键值存储中,数据被允许存在多个备份。取代使用其他昂贵硬件资源来增加速度,这里的设计理念是利用磁盘空间,它更新起来非常容易,成本也不高。
对于简单查询来说,多备份非常有利,在键值存储中,相关的数据可以被存储到一起,从而避免在查询过程中访问多个路径以获得所需数据。
取代关系型数据中的表格存储类型,键值存储使用域,同时也无需预定义数据结构模式。域中存储的数据通过键定义,它们可以通过大量不同的属性访问。
这些属性可能是字符串,也可以是流行编程语言中匹配的任意数据类型,它可能会是数组、对象、整形、浮点型、布尔型以及编程语言中使用的任意基本数据类型。
在键值存储中,取代数据本身,数据完整性和逻辑通过应用程序代码维护,通过使用1个或多个API,开发者可以编写出最优的实现方法。这样一来,数据检索工作被转移到编写正确的逻辑上,而不是依赖数据库去优化在大量可能路径中选择一个最佳路径。
写在最后
当然,除了键值存储的使用之外,Google Analytics快还源于其优秀的编程逻辑,这点就不再一一详述了。本文来自:CDA数据分析师培训官网
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20