京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Trifacta是一种提供数据分析服务的平台,最近获得了风险投资以推动其能使数据分析师更容易地做数据整理的工作。它的目标是能够比目前更快、更容易地收集、清理和转换数据。
数据整理(Data wrangling)一直是每个大数据项目中最耗费时间和最令人痛苦的部分。在我们这个时代,数据是流动的、异构的,作为数据源其属性会不断变化。 NoSQL数据库一直都尝试解答在存储方面是使用基于列式存储还是基于文档型存储,但问题依然是如何收集数据和应用其语义。
Trifacta以用户为中心的角度而不是以程序员的角度去解决问题。业务分析师和数据科学家将能使用可视化的方式去清洗数据集。基于伯克利分校和斯坦福大学的研究,该平台的目的是使员工和机器一起合作,以从数据集中提取数据。
使用可视化的方式我们可以从大数据集中自动化采样数据,这让分析师可以在很短的时间发现有趣的模式。Trifacta可以应用机器学习算法为重新组织信息和整理提供建议。大数据分析师可以将数据集分组为信息的逻辑部分,每次将其规范化,并在其工作过程中以友好的界面方式显示。归纳概括整个数据集合是最后一个步骤,这将最终形成半结构化的数据集并最终成形。该平台是在底层设计时考虑到用户的体验,让数据分析师能专注于数据的处理,而无需开发复杂的管道去清理数据和把它们放入数据仓库。
Trifacta的项目前身DataWrangler 和相关研究文章都可以在线获取并可以从中了解Trifacta是如何实现的,因为它们目前依然处于封闭的beta测试阶段,所以只能通过预约邀请的方式进行演示。
Trifacta Seeks to Simplify Data Wrangling-as-a-Service
Trifacta, a data analysis services platform, recently received VC investment to advance on their efforts of making data wrangling easier for data analysts. The goal is to collect, cleanse and munge data in a fraction of the time and effort it currently takes.
Data wrangling has traditionally been the most time consuming and painful part of every Big Data project. In our era, data is flowing, heterogeneous and constantly changing attributes as data sources are evolving. NoSQL databases have long tried to answer this question in the storage side by being column based or document based but the problem still remains in getting the data collected and applying semantics to it.
Trifacta is approaching the problem from a user centric perspective, instead of a developer one. Business analysts and data scientists will be able to cleanse datasets in a visual oriented way. Based on research at Berkeley and Stanford, the platform aims to make employees and machines collaborate together in extracting insights from datasets.
Automated smart sampling from big data sets together with visualization allows for the analyst to discover interesting patterns at a fraction of the time. Trifacta can then apply machine learning algorithms to suggest ways to reorganize information and get it into shape. The analyst can group the dataset into logical parts of information, normalizing it one step at a time and viewing the outcome in a user friendly way along its course of work. Generalizing in the whole dataset is the last step which turns the semi-structured dataset into shape. The platform is designed from ground up with user experience in mind to allow data analysts to shift in depth through data, without the need to develop complex pipelines to cleanse the data and bring them into the Data Warehouse.
Trifacta’s predecessor research project, DataWrangler and the research paper are available online and can give a sneak preview of what Trifacta is getting to, since they are still in a closed beta, only scheduling demos by invitation.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19