京公网安备 11010802034615号
经营许可证编号:京B2-20210330
淘宝是怎么分析数据的
当下,网络已经走进我们的生活,不管是城市还是农村,都会通过网络让我们的距离更加的近,以前买东西都会去实体店,现在知道通过互联网就可以在网上购买自己想要的商品。大数据时代,只要可能量化的东西,我们都可以从数据结论当中分析出导致这个数据结果的过程。只不过,很悲哀的是:数据在你面前只是一堆数字,你只知道事情发展的结果——因为通过数据显示出来了,但却无法倒推出数据发展的经过。这个经过是非常重要的,因为一旦你能了解这个经过,你下次就可以规避这次出现的问题或者复制这次的成功。
可是绝大多数时候,更多的人却不知道自己是怎么做成这样的:做成功了,我不知道,做失败了,我也不知道,反正最终的结果就是这样了,想要着手优化,却无能为力。
所以,有条理有步骤的做事,会让所有的工作事半功倍。
在做数据分析之前,在拿到这个数据结果同时,我们首先需要明白一个东西:这个数据,对你来说有什么意义?
比如说:现在我的转化率是10%,那么这个转化率是高是低?怎样去评判?如果是低,是什么原因导致他低的?如果是高,又该怎么办?我还能不能把他做到更高?
首先来看第一个问题,如何来判断自己的转化率高还是低?其实很简单,你需要你参照,这个参照物,就是行业平均值。
在直通车官方信息发布平台可以看到。(在这个平台要自动跳转到万堂书院,我也不知道怎么一个情况。)在直通车流量解析和行业解析也可以看到,但这里请各位注意这里只是直通车的数据。但是我们可以根据这个,进行推测。
有了这个标准,那么我们就解决了第一个问题,假设我现在是T恤,我的点击转化率在10%,我是远远高于行业水平的,那么我可以说:我的转化率就是高。
接下来的问题是,我究竟是怎样做到这么高的?我还想再高怎么办?
这时候,需要运用我们最基本的公式来解答这个问题。
转化率=总成交笔数/点击量
转化率高,就说明每个流量都有更大几率带来更多的成交笔数。证明两个点:第一,流量相对精准,第二,产品相对吸引人。但是我需要大家排除一点:你的流量是在一定基数情况下产生成交的。
比如说,现在我有1个流量,成交1笔,我的转化率是100%,这难道就证明我的东西非常好了?除非我能够在今后的一个月或者更久远的时间里,都能保持这样的数据,那么我可以说,我的东西非常好。
所以,我现在流量是在一定基础的情况,我能够稳定的保持这样的转化率,那对我而言,我可以说,我的东西是比别人的要好。但是我应该要如何提升呢?
通过上面的公式,我可以知道,如果我要继续提升我的转化率,无非两个措施:第一,在流量不变的情况下,有更多的成交笔数;第二,增长流量同时增长我的成交笔数。
当然最好的结果是第一种选项,因为我维持现在的流量相对比较容易,成本不会发生变化;第二种选项呢,会抬高我的成本,因为流量就两个方面:免费和付费,我们知道免费流量提升,并不是手到擒来的事情,而付费流量提升,就会抬高的我的成本,所以我会优先选择第一种方案执行,增加我的成交笔数。
怎么做?各种关联促销,店铺活动,套装打包…不用我多说,简单来说,以前一个流量卖1件,现在你需要想法子一个流量卖2件。可能有人会有一个问题:为什么我不优化单品详情页面促成更多的成交?因为我单品转化率都10%,证明我的详情页面做得还是挺不错,那万一我优化失败,转化率反而跌了怎么办?所以我为了降低我自己的风险,必须先从其他方面入手。
那么如果是你的转化率低于行业水平呢?
很明显,还是这个公式,从成交笔数和流量上找原因,流量多,转化笔数少,先优化详情吧,我可以对比一下其他家卖得很好的是怎么做的,究竟是我客单价高,销量太少,还是有差评导致成交笔数很少的?这些问题,我们都可以弄得明白。而流量少,没转化,那就想想法子先把流量做上来,直通车要不要开?钻展要不要做?我能报一些活动吗?这都是解决问题的方法。
数据分析到这里,并没有结束,我通过反推,找到了我的一些问题所在,我现在要着手改进,那么我需要有个记录,我需要改进的地方。比如说,现在我发现我转化还是蛮不错,就是流量太少了,那我要开直通车,每天带来100个流量,冲击一下我的转化率,所以我记录下来:直通车,流量100个,转化率预计提升多少。因为每天的数据不太精准,波动比较大,所以七天观察一次,给我自己一个反馈,看看有没有达到我需要的目标。
如果没有,还是公式,我得稍微分析一下情况,如果达到,我下一步的计划又是做什么?
所以,分析数据,其实很简单,并没有想象中的复杂,时常有人说数学不好,干不来这个。可以告诉大家,我数学只有在小学三年的之前及格过,重要的是理清数据的逻辑,才能更好分析数据。
所以数据分析的步骤,大致就是这样:判断(究竟是高还是低?)——明白自身需求以及目标(优化点击率?转化率?ROI?)——分析(公式入手)——优化并记录(优化动作是什么)——反馈(是否达到需求目标)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16