淘宝是怎么分析数据的
当下,网络已经走进我们的生活,不管是城市还是农村,都会通过网络让我们的距离更加的近,以前买东西都会去实体店,现在知道通过互联网就可以在网上购买自己想要的商品。大数据时代,只要可能量化的东西,我们都可以从数据结论当中分析出导致这个数据结果的过程。只不过,很悲哀的是:数据在你面前只是一堆数字,你只知道事情发展的结果——因为通过数据显示出来了,但却无法倒推出数据发展的经过。这个经过是非常重要的,因为一旦你能了解这个经过,你下次就可以规避这次出现的问题或者复制这次的成功。
可是绝大多数时候,更多的人却不知道自己是怎么做成这样的:做成功了,我不知道,做失败了,我也不知道,反正最终的结果就是这样了,想要着手优化,却无能为力。
所以,有条理有步骤的做事,会让所有的工作事半功倍。
在做数据分析之前,在拿到这个数据结果同时,我们首先需要明白一个东西:这个数据,对你来说有什么意义?
比如说:现在我的转化率是10%,那么这个转化率是高是低?怎样去评判?如果是低,是什么原因导致他低的?如果是高,又该怎么办?我还能不能把他做到更高?
首先来看第一个问题,如何来判断自己的转化率高还是低?其实很简单,你需要你参照,这个参照物,就是行业平均值。
在直通车官方信息发布平台可以看到。(在这个平台要自动跳转到万堂书院,我也不知道怎么一个情况。)在直通车流量解析和行业解析也可以看到,但这里请各位注意这里只是直通车的数据。但是我们可以根据这个,进行推测。
有了这个标准,那么我们就解决了第一个问题,假设我现在是T恤,我的点击转化率在10%,我是远远高于行业水平的,那么我可以说:我的转化率就是高。
接下来的问题是,我究竟是怎样做到这么高的?我还想再高怎么办?
这时候,需要运用我们最基本的公式来解答这个问题。
转化率=总成交笔数/点击量
转化率高,就说明每个流量都有更大几率带来更多的成交笔数。证明两个点:第一,流量相对精准,第二,产品相对吸引人。但是我需要大家排除一点:你的流量是在一定基数情况下产生成交的。
比如说,现在我有1个流量,成交1笔,我的转化率是100%,这难道就证明我的东西非常好了?除非我能够在今后的一个月或者更久远的时间里,都能保持这样的数据,那么我可以说,我的东西非常好。
所以,我现在流量是在一定基础的情况,我能够稳定的保持这样的转化率,那对我而言,我可以说,我的东西是比别人的要好。但是我应该要如何提升呢?
通过上面的公式,我可以知道,如果我要继续提升我的转化率,无非两个措施:第一,在流量不变的情况下,有更多的成交笔数;第二,增长流量同时增长我的成交笔数。
当然最好的结果是第一种选项,因为我维持现在的流量相对比较容易,成本不会发生变化;第二种选项呢,会抬高我的成本,因为流量就两个方面:免费和付费,我们知道免费流量提升,并不是手到擒来的事情,而付费流量提升,就会抬高的我的成本,所以我会优先选择第一种方案执行,增加我的成交笔数。
怎么做?各种关联促销,店铺活动,套装打包…不用我多说,简单来说,以前一个流量卖1件,现在你需要想法子一个流量卖2件。可能有人会有一个问题:为什么我不优化单品详情页面促成更多的成交?因为我单品转化率都10%,证明我的详情页面做得还是挺不错,那万一我优化失败,转化率反而跌了怎么办?所以我为了降低我自己的风险,必须先从其他方面入手。
那么如果是你的转化率低于行业水平呢?
很明显,还是这个公式,从成交笔数和流量上找原因,流量多,转化笔数少,先优化详情吧,我可以对比一下其他家卖得很好的是怎么做的,究竟是我客单价高,销量太少,还是有差评导致成交笔数很少的?这些问题,我们都可以弄得明白。而流量少,没转化,那就想想法子先把流量做上来,直通车要不要开?钻展要不要做?我能报一些活动吗?这都是解决问题的方法。
数据分析到这里,并没有结束,我通过反推,找到了我的一些问题所在,我现在要着手改进,那么我需要有个记录,我需要改进的地方。比如说,现在我发现我转化还是蛮不错,就是流量太少了,那我要开直通车,每天带来100个流量,冲击一下我的转化率,所以我记录下来:直通车,流量100个,转化率预计提升多少。因为每天的数据不太精准,波动比较大,所以七天观察一次,给我自己一个反馈,看看有没有达到我需要的目标。
如果没有,还是公式,我得稍微分析一下情况,如果达到,我下一步的计划又是做什么?
所以,分析数据,其实很简单,并没有想象中的复杂,时常有人说数学不好,干不来这个。可以告诉大家,我数学只有在小学三年的之前及格过,重要的是理清数据的逻辑,才能更好分析数据。
所以数据分析的步骤,大致就是这样:判断(究竟是高还是低?)——明白自身需求以及目标(优化点击率?转化率?ROI?)——分析(公式入手)——优化并记录(优化动作是什么)——反馈(是否达到需求目标)
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21