
淘宝是怎么分析数据的
当下,网络已经走进我们的生活,不管是城市还是农村,都会通过网络让我们的距离更加的近,以前买东西都会去实体店,现在知道通过互联网就可以在网上购买自己想要的商品。大数据时代,只要可能量化的东西,我们都可以从数据结论当中分析出导致这个数据结果的过程。只不过,很悲哀的是:数据在你面前只是一堆数字,你只知道事情发展的结果——因为通过数据显示出来了,但却无法倒推出数据发展的经过。这个经过是非常重要的,因为一旦你能了解这个经过,你下次就可以规避这次出现的问题或者复制这次的成功。
可是绝大多数时候,更多的人却不知道自己是怎么做成这样的:做成功了,我不知道,做失败了,我也不知道,反正最终的结果就是这样了,想要着手优化,却无能为力。
所以,有条理有步骤的做事,会让所有的工作事半功倍。
在做数据分析之前,在拿到这个数据结果同时,我们首先需要明白一个东西:这个数据,对你来说有什么意义?
比如说:现在我的转化率是10%,那么这个转化率是高是低?怎样去评判?如果是低,是什么原因导致他低的?如果是高,又该怎么办?我还能不能把他做到更高?
首先来看第一个问题,如何来判断自己的转化率高还是低?其实很简单,你需要你参照,这个参照物,就是行业平均值。
在直通车官方信息发布平台可以看到。(在这个平台要自动跳转到万堂书院,我也不知道怎么一个情况。)在直通车流量解析和行业解析也可以看到,但这里请各位注意这里只是直通车的数据。但是我们可以根据这个,进行推测。
有了这个标准,那么我们就解决了第一个问题,假设我现在是T恤,我的点击转化率在10%,我是远远高于行业水平的,那么我可以说:我的转化率就是高。
接下来的问题是,我究竟是怎样做到这么高的?我还想再高怎么办?
这时候,需要运用我们最基本的公式来解答这个问题。
转化率=总成交笔数/点击量
转化率高,就说明每个流量都有更大几率带来更多的成交笔数。证明两个点:第一,流量相对精准,第二,产品相对吸引人。但是我需要大家排除一点:你的流量是在一定基数情况下产生成交的。
比如说,现在我有1个流量,成交1笔,我的转化率是100%,这难道就证明我的东西非常好了?除非我能够在今后的一个月或者更久远的时间里,都能保持这样的数据,那么我可以说,我的东西非常好。
所以,我现在流量是在一定基础的情况,我能够稳定的保持这样的转化率,那对我而言,我可以说,我的东西是比别人的要好。但是我应该要如何提升呢?
通过上面的公式,我可以知道,如果我要继续提升我的转化率,无非两个措施:第一,在流量不变的情况下,有更多的成交笔数;第二,增长流量同时增长我的成交笔数。
当然最好的结果是第一种选项,因为我维持现在的流量相对比较容易,成本不会发生变化;第二种选项呢,会抬高我的成本,因为流量就两个方面:免费和付费,我们知道免费流量提升,并不是手到擒来的事情,而付费流量提升,就会抬高的我的成本,所以我会优先选择第一种方案执行,增加我的成交笔数。
怎么做?各种关联促销,店铺活动,套装打包…不用我多说,简单来说,以前一个流量卖1件,现在你需要想法子一个流量卖2件。可能有人会有一个问题:为什么我不优化单品详情页面促成更多的成交?因为我单品转化率都10%,证明我的详情页面做得还是挺不错,那万一我优化失败,转化率反而跌了怎么办?所以我为了降低我自己的风险,必须先从其他方面入手。
那么如果是你的转化率低于行业水平呢?
很明显,还是这个公式,从成交笔数和流量上找原因,流量多,转化笔数少,先优化详情吧,我可以对比一下其他家卖得很好的是怎么做的,究竟是我客单价高,销量太少,还是有差评导致成交笔数很少的?这些问题,我们都可以弄得明白。而流量少,没转化,那就想想法子先把流量做上来,直通车要不要开?钻展要不要做?我能报一些活动吗?这都是解决问题的方法。
数据分析到这里,并没有结束,我通过反推,找到了我的一些问题所在,我现在要着手改进,那么我需要有个记录,我需要改进的地方。比如说,现在我发现我转化还是蛮不错,就是流量太少了,那我要开直通车,每天带来100个流量,冲击一下我的转化率,所以我记录下来:直通车,流量100个,转化率预计提升多少。因为每天的数据不太精准,波动比较大,所以七天观察一次,给我自己一个反馈,看看有没有达到我需要的目标。
如果没有,还是公式,我得稍微分析一下情况,如果达到,我下一步的计划又是做什么?
所以,分析数据,其实很简单,并没有想象中的复杂,时常有人说数学不好,干不来这个。可以告诉大家,我数学只有在小学三年的之前及格过,重要的是理清数据的逻辑,才能更好分析数据。
所以数据分析的步骤,大致就是这样:判断(究竟是高还是低?)——明白自身需求以及目标(优化点击率?转化率?ROI?)——分析(公式入手)——优化并记录(优化动作是什么)——反馈(是否达到需求目标)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09