在当下,随着人类对物质生活的提高,很多从事产品销售方面的来说,秉承着“以客户为中心”的销售理念,让他们在工作中遇到了很多难题。客户的心思不好琢磨,用户研究的工作也似乎高深莫测。不过,用户研究并不一定总要使用眼动测试这样专业的手段才能进行。借助现在很多产品都有的“用户反馈”功能,其实就可以进行简单的用户数据分析。
“用户反馈”作为用户研究的手段,具有独特的优势。首先,“用户反馈”反映了用户在真实使用环境中正在发生的问题。焦点小组、用户访谈等方法,在预测用户行为习惯的方面能够发挥巨大作用,但缺乏用户实际操作的数据;可用性测试能够提供用户行为的数据,但是测试环境跟用户实际的使用环境很不一样,因此得出的结论仍然是预测性的。“用户反馈”则更进一步,将用户在使用产品的行为过程中遇到的问题有效地收集起来。其次,“用户反馈”功能的实现非常简单。它可以是软件界面上的一个按钮,也可以是网站上的一个“常见问题及解答(FAQ)”页面,甚至是一部热线电话和一个接听人员。大大降低了用户研究的门槛。
用户反馈分析的作用
在分析“用户反馈”之前,要先明确分析“用户反馈”能做什么,不能做什么(如下图)。否则很容易让分析流于文字表面,或被用户五花八门的思路牵着鼻子走,不能命中产品问题的本质。通过对用户反馈的分析可以让我们做到三件事:第一,学习用户的语言,从用户的角度去理解产品,从而建立用户关于产品的心智模型。第二,了解用户的期望是什么,哪些期望在产品中得到了满足,哪些没有被满足。第三,了解用户在使用产品中的“痛点”,即最困扰用户使用产品的问题是什么。
另外还要注意的两点是:第一,“用户反馈”收集的建议不能代表所有用户的感受。因为即使“用户反馈”的机制门槛很低,还是会让很多不那么热心的用户在遇到问题时保持沉默。第二,直接使用用户的话来描述产品存在的问题可能存在风险。要知道用户在提意见的时候可能已经被遇到的问题惹恼了,或者自己根本对产品的使用一头雾水,无法冷静且准确的告诉你真正的问题是什么。
用户反馈的分析方法
对用户反馈进行分析,可以令用户零散输出的、缺乏组织的信息系统化,便于从中快速发现产品问题。用户反馈的分析过程分三步:制定编码->按编码将反馈归类->分析归类结果(如下图)。下面逐一进行简要的介绍。
1、编码
一般来说,用户反馈的编码和分析只抽取最近几周到几个月内的数据就足够说明问题了。在这一时间范围内从“用户反馈”系统中逐条抽取反馈,根据反馈的内容建立编码,直到不再产生新的编码为止。编码可以是任何维度上的,只要对后续的分析有帮助——比如按照反馈内容的实质建立编码(性能问题、交互问题、新功能期望等),或按照用户的感受建立编码(生气、失望、满意、超出预期等)。需要注意的是,在阅读反馈并建立编码时需要聚焦于事实,不能因为用户反馈的语气激烈就认为问题很严重。
接下来需要再从近期的用户反馈中抽取一定数量的反馈(100-200条),由两个人分别按照编码进行分类。完成后,两人将各自的分类结果进行对比。检验两人对相同编码是否理解一致?是否存在对产品改进没有意义的编码?是否存在太笼统或太狭隘的编码?是否存在实际内容相同,但命名不同的编码?根据对上述几个问题的考察,对编码系统进行微调,可以使其他未分析的反馈之后得到明确分类。
2、归类
编码建立之后,将近期反馈数据中未参与建立编码过程的反馈条目,全部按照确定的编码系统进行分类。要注意的是,因为“沉默”用户的存在,每个编码分类下的反馈条数事实上很难反映该类问题的重要程度,不可以轻易就下结论。
3、分析
在分析用户反馈的分类编码数据时,首先要注意数据的附加信息。例如,数据来自于有什么特点的用户群,数据收集于哪一时间段,用户在产生反馈时正在用产品完成什么工作,等等。其次,要观察数据的对比和变化。例如,两个用户群的反馈存在怎样的差异,用户在不同时期的反馈内容有怎样的变化,等等。可以想象,如果在一个产品新版本推出之后,负面反馈数量极具增加,那么新版本有关方面的变化很可能损害了用户的使用体验。
由于篇幅有限,关于用户反馈的分析方法就先总结到这里。长久来看,对用户反馈进行这样系统的归类和分析,可以使我们掌握用户想法的变化趋势以及用户对产品新版本的反应,有助于我们预测产品的未来发展方向。并且,用户反馈分析还具有数据收集容易,对分析人员的专业要求较低等特点,非常适合作为简便的用户数据分析工具。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10