当今社会,人人都谈论大数据,怎么能让数据分析,数据挖掘创造出价值。各个企业也都在这方面加强的投入,期待这些数据分析部门能够提供刚好的建议,帮助企业进一步的提高。同时,也有一些公司是专门做数据分析的,希望能够帮助产生数据的甲方分担数据分析的担子,挖掘出更多有价值的规律,帮助甲方不断改进业务水平、不断发现业务中存在的问题。从这个角度来讲,甲方公司与第三方数据服务公司的初衷是一致的。
那么到底在第三方公司做数据服务和甲方公司做数据服务有没有哪些不同呢?结合最近几年第三方公司到甲方公司做数据的经历,对二者做数据方面的差异进行了一个简单的总结。
1、追求不同
第三方公司与甲方公司关于数据服务的合作模式大致有这样几种:
1) 长期监测流量数据——定期提供日报、周报、月报;
2) 临时项目——接到甲方公司的需求,发起项目,在规定的项目周期内,以报告的形式总结项目研究成果。
无论哪种合作方式,第三方分析人员在分析的过程中,总是孤独的、总是更依赖数据的。因为不在所分析的环境之内,不知道运营最近在做什么,不知道产品有什么样的计划,一句话:不知道对方关注的点到底在哪里。
甲方公司内部做数据,其实合作方式也同上面列的两种差不多。只是细节配合上有所不同:
1) 研究前会详细了解项目的背景及产品或运营人员的困惑;
2) 研究中遇到数据上无法解释的问题,可以随时找到相关的人员反馈情况。和业务同事一起分析数据异常的原因。
3) 研究后会汇报整个研究成果、和业务同事讨论下一步的改进策略及方案、约定下一次的研究时间点。
所以说,受到条件所限,尽管初衷与甲方公司是一致的,但是由于无法深入接触业务,因此对于最终的目标只能停留在完成一份严谨、专业的数据分析报告上。至于后续,甲方公司如何使用这份报告,如何改进业务、是否改进业务等一系列后续的工作都不得而知。因此,第三方公司的成果产出总是不能在整个业务链条上形成一个闭环。
但是,这个也的确是无法避免的一个事情。相信目前大多数公司,尤其是中国公司,对公司内部数据的私密性还是比较看重,对于第三方公司的态度不会是完全开放的。因此,双方的配合也仅限于比较浅层的合作。第三方公司想要真正走完业务闭环,从现阶段来讲是完全不可能的。
久而久之,第三方的数据分析人员也就习惯了把制作一份精良的报告作为最终的目标。
附:过渡阶段真实感受
刚从第三方公司进入新浪微博做第一个项目的时候,项目汇报当天得到了产品人员的肯定。我当时非常高兴,感到工作得到了认可。以为产品同事都认可了,肯定领导也会觉得还不错吧。但是,结果却是完全相反的。组长同学对于我没有任何下一步结果追踪计划感到很不解,从我们严肃的谈话中我深切的体会到,在甲方公司数据真的是为产品改进或运营服务的。如果你的发现仅停留在问题的总结和整理上,那工作基本上只做了50分。相当于,医生只为病人拍了x光,之后就对病人置之不理了。
2.展现形式不同
对于第三方公司与甲方公司的合作方式,项目的价值就体现在报告上,因此报告的制作既要美观又要让人感到“物超所值”。只有几页的PPT是绝不能作为最后的产出成果的。如果能在研究时,通过建立某个复杂的模型,来辅助说明研究成果就会显得更有价值。
而在甲方公司内部,大家都迫切的想知道,看到这个研究成果我到底能做什么。如果这个模型复杂到产品人员都看不懂,或不知所措,那也是没有意义的。反而是针对某个具体问题的研究,哪怕只有几页纸,几个数据,也会令产品人员很兴奋。
比如,偶尔从数据上看到一些现象或问题,此时做一个简单的整理,打印出几页纸就可以去和产品、运营的同学去聊了。去看看业务一线的同事是如何看待这一现象的,是不是有一些重要的运营策略影响了某些数据结果,造成数据结果异常,而并非真正出现了问题。如果没有其他异常因素的影响依旧出现了这个现象,那么我们下面真的要立项去花时间找到问题的原因了。
3.成就感体现不同
第三方数据公司,核心业务就是对数据进行采集、分析,因此负责产出数据报告的数据分析人员,相比之下,工作成果很容易被大家看到。因此,也很受到公司的重视。
而在甲方公司,数据服务是一个职能线,是为产品和运营人员服务的。或许工作价值的体现只有在完整走完业务链条后才能够体现出来。即便走完整个业务链条,又如何评估数据在整个过程中的作用,也是一个艰难的工作。但是,作为一个数据分析人员,能够看到自己的分析,帮助产品或运营发现了问题,使产品体验或运营机制得到了改善,这种成就感还是会使分析人员振奋的,还是会兴致勃勃的冲向下一个项目。
4.对行业标准的把握不同
第三方数据公司由于服务行业内的多家公司,因此会将同行业公司的相同业务模块放在一起,出一个行业标准。 在不透露客户商业机密的情况下,为客户提供行业标准数据。使各家都可以清楚的了解其在行业中的地位,了解哪些数据表面上看起来很好看,但是与行业标准对比,其实情况并不乐观。我想,这也是第三方数据公司的最大价值所在。
但是,现状是,中国的互联网行业,大家对数据还是守得很紧,不愿意过多的让第三方介入。这造成的结果就是,大家都没有一个行业标准。数据结果的好坏就只能依靠经验了。
综上所述,这两种数据分析工作的差异,给我的体会是:数据分析重点不在数据,而在于如何能够真正的解决实际的问题。数据分析师的终极价值不是会使用多少种统计工具,能挖掘出多少个数据模型,而是真正的懂业务。看到数据结果能够知道哪些业务出现了问题,而看到业务问题又可以清楚的知道通过分析哪些数据能够获知问题的原因。当然,如果从大的方面来讲,各公司都能够愿意与第三方公司合作,通过第三方公司把行业标准建立起来,那将会使数据最终发挥更大的价值。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10