当你开车路过一家餐厅的停车场时,你的手机屏幕上弹出了这家餐厅的当日特价菜品推荐,这种体验是不是很棒?如果赌场老板把发牌人忘记付给你的20美元亲自送还给你,你的心里是不是有点儿小激动?如果在线视频游戏能够把和我们玩法相近的用户即刻告知我们,这世界会不会变得很美妙?你是不是要下调汽车保险费率?大数据能让这一切变成现实。
网络数据即使不是最原始的大数据源,也是使用最广泛、认可度最高的大数据源。除此之外,还有很多大数据源,它们都有各自的使用价值。其中一些广为人知,而另一些几乎没有名气。我们在此要借用本章的篇幅一起来回顾除网络数据以外的其他9 种大数据源以及它们的用途。我们将站在一个较高的层次上讲解这部分内容,意图是在简单描述各类数据源的基础上,回顾每种大数据源的应用与商业含义。
我们发现了一个非常明显的趋势,各行各业虽然生成了许多大数据源,但其底层的支撑技术却是相同的。而且,不同行业还可以使用相同的大数据源。大数据并非只有单一的用途,它的影响将会非常深远。
我们将要讨论以下几种大数据源。
汽车保险业:车载信息服务数据的价值。
多个行业:文本数据的价值。
多个行业:时间数据与位置数据的价值。
零售制造业:RFID 数据的价值。
电力行业:智能电网数据的价值。
博彩业:筹码跟踪数据的价值。
工业发动机和设备:传感器数据的价值。
视频游戏:遥测数据的价值。
电信业与其他行业:社交网络数据的价值。
汽车保险业:车载信息服务数据的价值
车载信息服务在汽车保险行业中的关注度非常高。车载信息服务是通过汽车内置的传感器和黑盒来收集和掌握车辆的相关信息。我们可以配置不同的方案,使用黑盒来监测所有的汽车数据。我们可以监测车速、行驶里程,以及汽车是否安装了紧急制动系统。车载信息服务数据能够帮助保险公司更好地理解客户的风险等级,并设置合理的保险费率。如果彻底地忽略隐私问题,车载信息服务装置可以跟踪到汽车去过的所有地点、何时到达的、以多快的速度、使用了汽车的哪些功能等。
车载信息服务可以潜在地降低司机的保险费率,并提升保险公司的收益。它是怎样做到在降低费率的同时提升收益呢?答案就在于保险公司要根据风险评估来进行保险定价。传统的风险评估方法使用的是年龄、人口统计特征以及个人意外伤害历史这类数据,它们只能提供高层次的概要信息。对于驾驶记录没有任何问题的车主,传统方法根本没办法把他们和附近的其他人区分开。
保险公司要未雨绸缪,并做好最坏的打算。它们要弄清楚哪些人放在哪个风险范围上是最安全的,一般情况下,它们会先假定这些人的风险是位于该风险范围较高的一端。汽车保险公司对车主的行为习惯和实际风险了解得越详细,风险范围就会越窄,同时认定范围内出现需要提升费率的最坏情况的可能性就会比较小。这就是为什么可以同时降低保险费率和提升收益的原因。如果保险公司认为投保个体的风险较好,那么保险公司将可以更好地了解每个人的风险状况,预计必须支出的保费就不会发生太大变化。
全球很多国家的保险公司都在使用车载信息服务,而且数量越来越多。早期项目的注意力放在从汽车上收集最少的信息,例如,它们并不关心汽车去过什么地方。早期项目跟踪的是汽车开了多远、什么时候开的车、是否超速和是否使用了大量的紧急制动。这些信息都是非常基本的信息,不牵涉到个人隐私,是故意设计成这样的。因为避免了收集高度敏感的信息,所以才会被广泛地接受。这个道理也同样适用于商业车队。如果保险公司了解到公司车队更多的用车情况,那么它为公司车队确定保险费率也就更容易。
车载信息服务数据最初是作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险。再过一段时间,等到许多交通工具都安装了车载信息服务装置后,那时保险业以外的行业也可以使用车载信息服务数据了。现在,公共汽车已经有了车载计算机管理系统,但是车载信息服务设备可以将其提升到一个新的层次。车载信息服务数据还有一些有趣的应用,我们来看一下这些应用。
使用车载信息服务数据
如果车载信息服务真的开始大规模应用,一定会出现许多令人兴奋的分析应用。想象一下,以后全国有数以千万计的汽车都安装了车载信息服务装置,那时候第三方研究公司会以匿名的方式为客户收集非常详细的车载通信数据。与为保险收集的有限数据不同,这时数据收集是以分钟或秒为频率,且收集内容包括但不限于速度、位置、方向和其他有用的信息。
无论交通是否阻塞,无论什么日期,这种数据反馈方式都会提供大量的车载通信信息。研究人员可以知道每辆车在道路上的行驶速度,他们还可以知道车流开始的时间、结束的时间,以及持续的时间。这种真实的交通流信息视图将会多么令人惊讶!试想这会对交通阻塞和道路系统规划的研究产生多么大的影响!
无心插柳柳成阴
车载信息服务数据的多种用途只是一个例子,它说明了可以用最初预见不到的方式来使用大数据。对于某种特定的数据源,我们最后发现它最有效的用途可能与其创建之初的用途大相径庭。面对我们碰到的每一类大数据源,我们要开拓思路,多想想常规之外的其他用途。
如果研究人员能够掌握大量汽车在每一个高峰时段、每一天、每个城市中的动向,他们就能非常清晰地判断出车流产生的前因后果。此外,还能查明下述问题的答案。
一个在路中央的轮胎会对交通产生什么影响?
左侧车道堵车会发生什么?
如果路口的交通灯不同步,会产生何种结果?
哪些十字路口虽然按照预期设定方式工作,但通行时间的设计仍然不合理?
如果某条道路堵塞,堵塞会以多快的速度蔓延到其他道路?
即使我们集中精力投入到昂贵的测试中,现在要想有效地研究诸如此类的问题也几乎是不可能的。除非我们安排人手来实际地监测每一条道路,记录下所有的信息,只有这样我们才能解决交通堵塞的问题。或者,我们可以安装大量的传感器来监测过往的车辆,还可以安装视频摄像头,但这些选择因为成本问题被严重限制了推广。
交通道路工程师做梦都想得到我们所讲的车载通信信息。如果车载通信装置变得随处可见,那任何交通拥堵的地方都能被发现。城市道路和交通管理系统的革新,以及城市道路建设规划,都将惠及普通大众。车载通信刚开始出现时是为了满足保险定价的需求,但有了它还可以缓解交通压力和驾驶员堵车时焦急等待的心情,它的存在终将使高速公路的管理模式发生革命性的改变。
多个行业:文本数据的价值
文本是最大的也是最常见的大数据源之一。想想我们周围有多少文本信息的存在,电子邮件、短信、微博、社交媒体网站的帖子、即时通信、实时会议以及可以转换成文本的录音信息。文本数据是现在结构化程度最低的,也是最大的大数据源。幸运的是,我们在驾驭文本数据、利用文本数据来更好地做商业决策方面已经做了很多工作。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26