关于GIS和Esri
我们每天都在提出这样一些问题:农田中的土壤有哪些特征?下一个服装店应该开在什么地方?货物如何才能最快的送到客户手中?如何找到离我的新家最近的超市?要回答这样一些问题,需要访问具有多维(x,y,z坐标和时序)、大容量和高处理费用的地理空间信息。
地理信息系统(Geographic InformationSystem,GIS)是用于回答地理学问题问题的艺术、科学、工程和技术的统称,是一种特定的十分重要的空间信息系统。它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。
美国环境系统研究所公司(Environmental SystemsResearch Institute, Inc. 简称Esri)成立于1969年,多年来,Esri公司始终将GIS视为一门科学,并坚持运用独特的科学思维和方法,紧跟IT主流技术,开发出丰富而完整的产品线。公司致力于为全球各行业的用户提供先进的GIS技术和全面的GIS解决方案。Esri其多层次、可扩展,功能强大、开放性强的ArcGIS解决方案已经迅速成为提高政府部门和企业服务水平的重要工具。
空间信息
地球本身构成了世界上最基础的信息。人和事物的地理定位是信息的主要组成部分。1978年全球定位系统(GPS)的正式构成,让我们无论是汽车上的导航设备还是自能手机,都可以快速、廉价的进行地理定位。定位时时刻刻都在生成信息,这些位置信息构成了庞大的地理数据。这些数据越来越多的被用在各种分析上面,如无线运营商通过收集和分析这些数据来提升移动互联网的服务水平。交通部门通过这些信息来预测交通情况。
通过地理的手段来分析空间位置的相关信息,来揭示相关的模式与关联信息,在大数据的背景下,是GIS界新前沿、新发展和新机遇。
空间数据是一种特殊结构的信息,要对空间数据进行分析,就需要了解空间数据的特性和运作方式。如何启用hadoop来对空间数据进行分析,是Esri在大数据上一直为之努力的目标。
ArcGIS与Hadoop
随着ArcGIS 10.2版本的发布,一同推出的开源工具包GIS Tools for Hadoop,完美的诠释了海量空间数据与分布式运算的结合。
GIS Tools for Hadoop 是一个开源的工具包,它定义和构建了一整套空间分析的环境,在GIS与hadoop之间搭建起了一个桥梁。
从20世纪60年代至今,GIS已经迅速发展成了一个独特的研究与应用领域,并形成一个全球性的重要行业。
Esri这些年来,一直致力于研究GIS信息与数据的标准化,推出了ArcSDE这样的空间数据引擎,让空间数据与关系型数据库之间搭起了一个通路,可以让空间数据保存在主流的商业数据库中,使用每种DBMS所支持的标准SQL类型来管理数据,并且支持所有的空间数据类型(包括要素、栅格、拓扑、网络、地形、测量数据、表格数据,以及位置数据,例如地址、模型和元数据),而无需用户考虑DBMS的底层实现。
但是,空间数据更多的是像影像、TIN(Triangulated IrregularNetwork)这样的非结构化数据,而数据库中的查询语言,正如其名称的简写——SQL,就显示了它的僵化。所以急需新的,非关系型、非结构化的数据库和数据分析方法的出现。
Hadoop以其高可靠性、高扩展性、高效性和高容错性,特别是在海量的非结构化或者半结构化数据上的分析处理优势,给我们提供了另外一种思路。 Hadoop的核心算法就是“分而治之”,这个与GIS里面很多算法是相通的,GIS里面很多应用场景都是要去分析不同区域内的各种信息,把这样的计算放到Hadoop上,正好利用了Hadoop的分布式计算特性。特别是一直让GIS界最头痛的海量影像数据存储和数据分析,在Hadoop的分布式存储和分布式运算架构上,更是能够体现出Hadoop在GIS应用上的优势。
当我们数据量不够的时候,我们需要设计一套很复杂的算法,在样本数据中去探寻其中的规律,而且还要使用各种手段来保证数据的准确无误,但是当数据量足够大的时候,往往只需要一些很简单的算法就可以从海量的数据中得到满意的结果了。但是限于技术手段,特别是空间分析对计算资源的消耗,我们以前根本做不到基于如此庞大数据的分析。而放在hadoop上,可以利用Hadoop强大的分布式分析功能,来处理和分析更多的数据集。
比如在出租车辆定位的研究中,GPS数据每个1秒钟就将记录一条信息,信息的内容包括经纬度、海拔、时间、车速、方向等等,每辆车每天生成的数据量就高达8万多条,北京市的目前有出租车约为7万辆,也就是说每天生成GPS数据就高达60亿条记录。如果把这个信息的收集范围扩展到全国,年复一年,日复一日,那么收集上来的数据,将远远超出人们的想象。
这些数据如同地下的金矿,等着我们去发掘,有了这些数据,利用空间分析的方法,我们就可以计算出很多有意义的结果。如用户可以知道,在各种时段中,在何处打车最容易?出租车司机们可以知道在什么地方趴活最容易拉到客户,而保证最省油。运营公司可以知道在不同时间段出租车运营数量最少的区域,进行调整合理分配资源;交通部门可以根据出租车的时速来得到各道路的交通情况等等。
计算机和软件的处理是有限的,当数据量到达一定极限的时候,常规的手段就对这些庞大的数据无能为力了。这样就需要有新的技术来实现这种突破,以转变我们的处理手段。最能代表这种转变的,就是Hadoop的流行。
而GIS Tools for Hadoop的发布,让hadoop正式登上了空间分析的舞台。
目前GIS Tools for Hadoop只是迈出了小小的一步,实现了包括相交、包含、缓冲等常用的空间分析功能,并且与ArcGIS产品无缝的集成,可以在ArcGIS for Desktop中直接调用,并且将结果以空间信息的方式展现出来。但是还仅仅是开始,未来我们还期待着能够解决更多的问题,如GIS界最头疼的地图缓存切片生成和存储的问题、海量遥感影像的计算、大规模批空间插值、海量空间数据聚合、空间数据处理等等。
GIS Tools for Hadoop的发布表现了Esri始终关注IT界的热点技术,并努力为不同行业用户提供更多专业的支持。同时也是ArcGIS平台集成大数据一次很好的尝试。这个工具解决了Esri在大数据应用方面从无到有的问题,有着重要的意义。GIS Tools for Hadoop在未来还有很大的发展空间,期待在后面的版本中会增加对影像数据的支持,这样对GIS行业来说将有更加重要的应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02