虽然收集和分析“大数据”存在一些分析和技术方面的挑战,但事实上大部分公司已经能够应对这种挑战。这是因为有一些非常强大的分析工具都是免费、开源的,可以充分利用这些工具来提升自己的能力。
Alex Jones推荐了10个针对企业的大数据分析工具,这些工具不仅免费、使用方便,而且具有强大的功能和良好的资源。
1、Tableau Public
这是一个简单直观的可视化工具。它在商业活动中表现的很强大,因为它通过可视化来表达。它有足够的空间和免费使用时长让你体验,在分析的过程中,Tableau的图片呈现可以让你快速的调查一个假设、验证你的直觉,做更好的商业决策。
2、OpenRefine
它是以前的GoogleRefine,OpenRefine是一款数据清理软件,可以对准备好的一切数据进行分析。例如最近我清理了一个含有化学名称的数据库,并且各行有不同的拼写、大小写、空格等,用计算机来处理非常困难,幸运的是, OpenRefine包含许多聚类算法,对这个问题可以快速解决。
Tip:可以用 IncreaseJava Heap Space 处理文件。
3、KNIME
KNIME可以通过可视化编程的方式来操作、分析和建模。不仅可以写代码。你还可以在操作中建立联系节点。基本上你只需要将功能模块拖拽到工作区,并将模块按照运行流程连接起来,就可以实现以往编程才能实现的工作。更重要的是,KNIME可以扩展到运行R, python, text mining,chemistry data等等,这可以让你选择用更先进的编码来分析。
Tip:读取CSV文件时需要用“File Reader”代替CSV阅读器。
4、RapidMiner
和KNIME类似, RapidMiner通过可视化编程操作,建模和分析数据。最近,RapidMiner赢得kdnuggets的软件调查。
5、GoogleFusion Tables
这是针对数据分析、大数据集的可视化和映射的一个非常强大的工具,谷歌的地图软件在其中起着重要作用。拿下面这张图来说,这是一张墨西哥湾石油生产平台的图,我只需要上传数据,Google Fusion Tables确认维度和经度的数据之后就开始工作了。
6、NodeXL
NodeXL是针对网络和关系的可视化分析软件。想想科技巨头地图上代表LinkedIn或Facebook的连接,NodeXL提供了进一步精确的计算。如果你在不需要那么先进的东西,你可以看看Google Fusion Tables,或者尝试用Gephi。
7、import.io
从网上抓取网页和信息曾经是技术人员的专利,现在用import.io,每个人都可以从网站和论坛获取数据。简单提出你想要的数据,几分钟之后import.io就可以通过你的搜索知道你在找什么,从而会挖掘、提供数据用于你的分析或输出。
8、Google Search Operators
不可否认谷歌最初是一个强大的资源和搜索公司,运营商可以让你快速过滤掉谷歌的结果得到的最有用的和相关的信息。比如说,你正想从ABC咨询里寻找一个今年的数据科学报告。如果我们认为该报告可能是PDF格式的,可以搜索
“数据科学报告”网站::ABCConsulting.com Filetype:PDF
然后在下面的搜索栏,使用“搜索工具”来屏蔽去年的结果。这在发现新的信息或市场研究方面非常有用。
9、Solver
Solver是一个在excel中做优化和线性规划的工具,允许你设置一些约束条件(例如不超过什么价格,要在哪天之前完成之类)。虽然更有效的优化可能会需要另一个程序(例如R的优化包),但是Solver应用范围比较广。
10、WolframAlpha
Wolfram Alpha的搜索引擎是一个隐藏的宝石,可以媲美苹果的Siri。WolframAlpha类似于不那么智能的Google,对科技搜索提供详细的回复,对微积分作用也能快速的搜索。对企业用户来说,它提供了信息图表,对历史价格、商品信息、主题概述。
虽然这些工具使得分析更简单,但他们只是把信息放进去然后进行分析,这些你自己也可以做到。所以用一点时间来学习新的技巧,用这些工具来提高自己完成工作。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21