22名数据专家预测2016年数据科学与大数据的发展趋势
预测未来永远不是件容易的事情。但随着2015即将结束,我们不禁期待新的一年会来带什么。你最终能买到一辆自动驾驶的汽车吗?机器会比人更聪明吗?还有,数据科学世界将会发生什么?
我们不是算命先生,因此我们集合一群专家,问问他们是怎么想的。这里就是他们所说的话(排名不分先后):
2016年最大的数据趋势将是什么?“
2016年将是令人兴奋的——大数据会更加主流化。2016年也会成为那些仍然没有坚实大数据战略的公司开始落后的一年。在技术方面,我看到实时数据分析会显著增加,以及越来越多地使用机器学习算法。”
——Bernard Marr,大数据权威和畅销书作家
“2016年,大数据世界将更注重智能数据,无论多少。智能数据是宽数据(数据维度多),而不一定是深数据(数据量大)。只要数据包含特征丰富的内 容和上下文(时间、地点、关联、连接、相互依存等等),能够带来智能的甚至自动的数据驱动过程、发现、决策和应用,它们就是智能的。”
——Kirk Borne,Booze Allen Hamilton首席数据科学家,RocketDataScience.org创始人
“2015年,我们了解到过去12个全世界创造数据的90%。在这次大数据爆发之中,我看到许多高级负责人渴望尽可能快地赶上并促进这一切,以理解大量信息为他们带来的商业机会。
2016年——我希望看到这些负责人不仅注意他们如何尽可能多地捕捉信息中的商业价值,还有他们如何才能为客户创造最佳体验。2016年的大数据座右铭应该是‘我们必须从数据中创造比数据更多的价值’。”
——Jeremy Waite,EMEA Salesforce Marketing Cloud数字策略主管
“2016年将是属于深度学习的一年。数据将从实验室移动到图像识别和语言理解中部署的技术,并在多个方面超越人类表现。”
——Gregory Piatetsky,KDNuggets总裁
“我想说的是,面向大众的数据科学是一方面,另一方面是开源技术带来更多的破坏,到某种程度再也没有人知道Hadoop的意思是什么,以及更多从未听说过的项目试图拉平通向数据科学的时间。”
——Paul Zikopoulos,IBM分析VP
“(在过去的10年中)一个工具、服务和公司的生态系统已经建立起来以应对这些数字问题。这一点也不是为了贬低那些贡献。10年后,我们建立了一些惊人的技术和产品。这些问题大多数已经被解决。仍待解决的是那些真实物理世界中的数据问题。
大数据行业的下一个10年将解决这些问题。借用我们已有构建高可用、可扩展智能系统的知识,以及发明新的系统,用于分析在模拟行为和决策发生时传递的数据流。
这两者都是行业的自然发展,也是构成下一代数据行业的各种技术、人以及公司的根本性转变。”
——Drew Conway,Alluvium的CEO和创始人
“我认为2016年是大数据整合时机成熟的一年。不过,我看到整合在这个行业中里不同的方式出现,而不是一家分析公司接管另一家。我也看到分析被增 加到各种各样的企业软件中,从欺诈检测到营销自动化。这种整合将会横向发生在多种平台上,一些大数据创业公司可以很好专注在那些他们想要颠覆的垂直领域 中。”
——Jeff Vance,《连线》,《福布斯》和Startup50的记者
“明年,口头禅‘看情况’将成为有关如何分享/可视化/图表化数据所有问题公认的答案。接受受众范围、目的和数据集将成为常态。只要创建者向目标和受众传递了合适的东西,条形图、饼图甚至时装艺术会被视为可视化数据的有效方式。”
灵感来自我在计算机世界上最近的专栏:Living With Data
——Andy Cotgreave,在Tableau的技术布道者
“开放数据终于开始变得更好。发布信息的数据转储并期望公众筛选出它们不再足够。从公司透明度报告到政府支出再到犯罪统计资料,在2016年我们会迅速超越原油开放数据到更复杂的努力,让公众确实可以使用开放数据,而无需半先进分析或代码技能。”
——Alex Salkever,RWW作者和Silk营销主管
“我相信2016年的主要数据趋势将是专业数据头脑的崛起。每个组织部门(营销、财务、HR等等)越来越多地得到自己数据的访问和所有权。这种数据的民主化造成了每个团队对有基本数据科学素养的专业人员的需求。
因此,除了招聘全职数据科学家外,组织将寻找作为这种数据驱动文化的一部分的雇员。这些专业人士不需要具有真正数据科学家的能力层次,但是他们将要在一定程度上处理和分析自己的数据,并提出正确的问题。
这些专业人员需要数据头脑!因为具备这种能力的人很少,类似DataCamp这样的公司已经率先向专业人员提供所需技能,不中断职业生涯而把他们变成具有数据头脑的人。”
——Martijn Theuwissen,DataCamp联合创始人
“有几件事跳入脑海,但其中一件一直都在,那就是使用强加密保护移动消息、语音和文件交换的新应用的激增,无论是为企业还是为个人。没有很多人注意 到这一点,但他们确实这么做了。无疑,政府会不太高兴,但并没有阻止。特别是企业不在新人开放通信,因此我们正在走向一个一切都被加密的世界。”
——John Dunn,英国计算机世界和Techworld的编辑
“可识别个人数据的使用正在日益变成消费者和监管部门的关注点,以及客户信任的战场。那些积极主动地尊重和保护消费者数据的公司将成为赢家。隐私会是2016年杀手级的应用。”
——Tim Barker,DataSift CEO
“手机的人工智能(你的手机可以搞清你要干什么,并预测你下一步怎么做)。”
——Andrea Cox,Open Data Institute
“明年企业将会看到来自全部数据的价值。不只是物联网,而是一切可以提供洞察的全联网。从数据中获取价值,这里的数据不限于电子设备、传感器和机器,还包括来自服务器日志、地理位置和互联网的全部数据。”
——Scott Gnau,Hortonworks CTO
“2016年我要为那些企业提供资金,使他们能够创建API,把web变成,所有构成互联网管道的那些困难问题将会像网络中的李维斯一样。”
——Thomas Korte,AngelPad创始人
“让用户能看到各种因素对其业务正在变得比以往更加重要。有了合并内部和外部数据源的能力,用户现在可以访问更多数据的上下文,最终带来更多洞察和更好决策。轻松快速在分析中加入人口统计学或位置数据能帮助组织减少一些管理抉择的风险。”
——James Richardson,Qlik商业分析策略师
“机器学习将减少洞察力的杀手——时间。机器学习将取代手工数据处理和数据管理中的脏活累活。节省出的时间将加速数据战略。”
——Brian Hopkins,Forrester Research VP和首席策略师
“正如每一个行业,破坏的力量——安全、可持续性、速度和成本——正在推动数据中心设计、建造和运行方式的变化。这在整个2016年应该作为向用户提供应用和内容的能力继续,而收集和分析数据对商业成功也越来越关键。”
——Steve Hassell,艾默生网络能源的数据中心解决方案总裁
“成功标准将由大量数据的使用转向数据收集的质量。这将意味着每个公司的多样性也可能降低,但是将要收集的具体数据会变得更有效、实用和丰富。由于公司意识到他们收集的大多数数据没有被使用,只是占用存储空间,这些将变得更加明显,而对数据的使用也会受到更多监督。”
——Chris Towers,Innovation Enterprise大数据创新主管
“2016年将会有关于根据你有权访问的数据采取何种操作的一切。引入算法。算法确定行动,它们都是非常擅长非常具体操作的软件的非常具体的一部分,比人类可能做得更好。思考一个基于网站访问画像快速决定最佳广告或者在大量交易数据中发现离群值以确定欺诈的例子。”
——Mark van Rijmenam,畅销书作家和Datafloq创始人
“因为大数据需要大量处理能力,许多组织将利用基于云的,‘大数据即服务’的产品,由此可以得到他们信息的全部价值,而不需要任何相关资金支出。”
——Stuart Mill,CenturyLink区域销售总监
“2016年将看到,使用那些让商业用户能在无需IT手把手协助下执行全面广泛的自助式大数据探索的工具进行的大数据分析会得到扩张。”
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20