抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型。
本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的R语言代码,你可以将其保存并运用到下一个机器学习项目中。
你无法在建模前就知道哪个算法最适用于你的数据集。
你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking。
我们所遇到的问题不是我应该采用哪个算法来处理我的数据集?,而是我应该抽查哪些算法来处理我的数据集?
首先,你可以思考哪些算法可能适用于你的数据集。
其次,我建议尽可能地尝试混合算法并观察哪个方法最适用于你的数据集。
尝试混合算法(如事件模型和树模型)
尝试混合不同的学习算法(如处理相同类型数据的不同算法)
尝试混合不同类型的模型(如线性和非线性函数或者参数和非参数模型)
让我们具体看下如何实现这几个想法。下一章中我们将看到如何在 R 语言中实现相应的机器学习算法。
R 语言中存在数百种可用的机器学习算法。
如果你的项目要求较高的预测精度且你有充足的时间,我建议你可以在实践过程中尽可能多地探索不同的算法。
通常情况下,我们没有太多的时间用于测试,因此我们需要了解一些常用且重要的算法。
本章中你将会接触到一些 R 语言中经常用于抽查处理的线性和非线性算法,但是其中并不包括类似于boosting和bagging的集成算法。
每个算法都会从两个视角进行呈现:
1.常规的训练和预测方法
2.caret包的用法
你需要知道给定算法对应的软件包和函数,同时你还需了解如何利用caret包实现这些常用的算法,从而你可以利用caret包的预处理、算法评估和参数调优的能力高效地评估算法的精度。
本文中将用到两个标准的数据集:
1.回归模型:BHD(Boston Housing Dataset)
2.分类模型: PIDD(Pima Indians Diabetes Dataset)
本文中的算法将被分成两组进行介绍:
1.线性算法:简单、较大的偏倚、运算速度快
2.非线性算法:复杂、较大的方差、高精确度
下文中的所有代码都是完整的,因此你可以将其保存下来并运用到下个机器学习项目中。
这类方法对模型的函数形式有严格的假设条件,虽然这些方法的运算速度快,但是其结果偏倚较大。
这类模型的最终结果通常易于解读,因此如果线性模型的结果足够精确,那么你没有必要采用较为复杂的非线性模型。
线性回归模型
stat包中的lm()函数可以利用最小二乘估计拟合线性回归模型。
# load the library
library(mlbench)
# load data
data(BostonHousing)
# fit model
fit <- lm(mdev~>, BostonHousing)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, BostonHousing)
# summarize accuracy
mse <- mean((BostonHousing$medv – predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
library(mlbench)
# load dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.lm <- train(medv~., data=BostonHousing, method=”lm”, metric=”RMSE”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.lm)
罗吉斯回归模型
stat包中glm()函数可以用于拟合广义线性模型。它可以用于拟合处理二元分类问题的罗吉斯回归模型。
# load the library
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- glm(diabetes~., data=PimaIndiansDiabetes, family=binomial(link=’logit’))
# summarize the fit
print(fit)
# make predictions
probabilities <- predict(fit, PimaIndiansDiabetes[,1:8], type=’response’)
predictions <- ifelse(probabilities > 0.5,’pos’,’neg’)
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.glm <- train(diabetes~., data=PimaIndiansDiabetes, method=”glm”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.glm)
线性判别分析
MASS包中的lda()函数可以用于拟合线性判别分析模型。
# load the libraries
library(MASS)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- lda(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8])$class
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.lda <- train(diabetes~., data=PimaIndiansDiabetes, method=”lda”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.lda)
glmnet包中的glmnet()函数可以用于拟合正则化分类或回归模型。
分类模型:
# load the library
library(glmnet)
library(mlbench)
# load data
data(PimaIndiansDiabetes)
x <- as.matrix(PimaIndiansDiabetes[,1:8])
y <- as.matrix(PimaIndiansDiabetes[,9])
# fit model
fit <- glmnet(x, y, family=”binomial”, alpha=0.5, lambda=0.001)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x, type=”class”)
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
library(glmnet)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.glmnet <- train(diabetes~., data=PimaIndiansDiabetes, method=”glmnet”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.glmnet)
回归模型:
# load the libraries
library(glmnet)
library(mlbench)
# load data
data(BostonHousing)
BostonHousing$chas <- as.numeric(as.character(BostonHousing$chas))
x <- as.matrix(BostonHousing[,1:13])
y <- as.matrix(BostonHousing[,14])
# fit model
fit <- glmnet(x, y, family=”gaussian”, alpha=0.5, lambda=0.001)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x, type=”link”)
# summarize accuracy
mse <- mean((y – predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
library(mlbench)
library(glmnet)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.glmnet <- train(medv~., data=BostonHousing, method=”glmnet”, metric=”RMSE”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.glmnet)
非线性算法对模型函数形式的限定较少,这类模型通常具有高精度和方差大的特点。
caret包中的knn3()函数并没有建立模型,而是直接对训练集数据作出预测。它既可以用于分类模型也可以用于回归模型。
分类模型:
# knn direct classification
# load the libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- knn3(diabetes~., data=PimaIndiansDiabetes, k=3)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8], type=”class”)
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.knn <- train(diabetes~., data=PimaIndiansDiabetes, method=”knn”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.knn)
回归模型:
# load the libraries
library(caret)
library(mlbench)
# load data
data(BostonHousing)
BostonHousing$chas <- as.numeric(as.character(BostonHousing$chas))
x <- as.matrix(BostonHousing[,1:13])
y <- as.matrix(BostonHousing[,14])
# fit model
fit <- knnreg(x, y, k=3)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x)
# summarize accuracy
mse <- mean((BostonHousing$medv – predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
data(BostonHousing)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.knn <- train(medv~., data=BostonHousing, method=”knn”, metric=”RMSE”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.knn)
e1071包中的naiveBayes()函数可用于拟合分类问题中的朴素贝叶斯模型。
# load the libraries
library(e1071)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- naiveBayes(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8])
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.nb <- train(diabetes~., data=PimaIndiansDiabetes, method=”nb”, metric=”Accuracy”, trControl=control)
# summarize fit
print(fit.nb)
kernlab包中的ksvm()函数可用于拟合分类和回归问题中的支持向量机模型。
分类模型:
# Classification Example:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12