
本文将探究一个被称为二次规划的优化问题,这是一种特殊形式的非线性约束优化问题。二次规划在许多领域都有运用,比如投资组合优化、求解支持向量机(SVM)分类问题等。在R中求解二次规划有许多包,这次,我们将讨论一下quadprog包。在我们开始讲解案例之前,我们将先简短地介绍一下二次规划的机理。
对于一个二次规划问题,首先要考虑的就是一个二次目标函数:
Q(x)=12xTDx−dTx+c.
这里 x 在 ℝn 中是一个向量, D 是一个n×n 的对称正定矩阵,在 ℝn 中 d 是常数项约束,c 是一个标量常数。Q(x)函数通常以二次函数的形式出现,并且它高维的通项表达式是:
q(x)=ax2+bx+c
Q(x)的关键特性在于这是一个凸函数。
我们也对向量x构造一个线性约束集合,即x ∈ℝn。
我们把这些约束写成:
Ax=fBx≥g
这里,A 是一个 m1×n 的矩阵且约束为 m1≤n,BB 是一个 m2×n 的矩阵.向量 f 和向量 g的长度分别是m1和m2.
这是一种让我们可以充分考虑实际条件的标准型。比如我们让 x 强制满足
∑i=1nxi=1
的求和条件,或者满足ai≤xi≤bi的区间约束。接下来,我们将介绍如何将这些约束转化为矩阵表达。
用这个符号系统,我们可以简洁表示二次规划 (QP):
{minimizex∈ℝn:Q(x)=12xTDx−dTx+csubjectto:Ax=fBx≥g
考虑目标函数:
Q(x,y)==12[xy][2−1−12][xy]−[−32][xy]+4x2+y2−xy+3x−2y+4.
我们这个约束条件下的可行域内寻求最小化:
yyy≥≥≤2−x−2+x3.
我们可以找到这个可行域的顶点并在R画出整个可行域:
plot(0, 0, xlim = c(-2,5.5), ylim = c(-1,3.5), type = "n", xlab = "x", ylab = "y", main="Feasible Region") polygon(c(2,5,-1), c(0,3,3), border=TRUE, lwd=4, col="blue")
SHAPE \* MERGEFORMAT
想要用quadprog包求解二次规划,我们需要同时转化我们的目标函数和约束条件为矩阵形式。这里是官方文档的说明:
This routine implements the dual method of Goldfarb and Idnani (1982, 1983) for solving quadratic programming problems of the form min(-d^T b + 1/2 b^T D b) with the constraints A^T b >= b_0.
可惜官方文档多可读性不高,我们很难得知如何准确地转化二次型Q(x,y)为一个矩阵形式。首先,我们观察到,对于任意常数 c, 都存在MinQ(x,y)+c 和 Q(x,y)的解相等。因此,我们可以忽略二次规划中的常数项:
D=[2−1−12]d=[−32].
我们可以写出约束方程的矩阵形式:
⎡⎣⎢⎢1−1011−1⎤⎦⎥⎥[xy]≥⎡⎣⎢⎢2−2−3⎤⎦⎥⎥
因此:
A=⎡⎣⎢⎢1−1011−1⎤⎦⎥⎥Tb0=⎡⎣⎢⎢2−2−3⎤⎦⎥⎥
quadprog包默认是求解最小化问题,目标函数二次,约束一次。所以,我们的约束条件默认的形式也就是AX>=bvec。通常我们需要把一些原来是求极大值的问题或者<=约束通过乘以负号来转化。
这是R的完整实现:
· 参数Dmat表示海赛矩阵
· 参数dvet表示一阶向量,和Dmat的维数要相对应。
· 参数Amat表示约束矩阵,默认的约束都是是>=。
· 参数bvet表示右边值,由向量,和Amat的维数要相对应。
· 参数 meq 表示从哪一行开始Amat矩阵中的约束是需要被当作等式约束的。
(1/6,11/6) 点是唯一满足约束条件和 Q(x,y)的最小化目标,但 (−4/3,1/3)点才是 Q(x,y) 的最小值点。iterations,Lagrangian 和 iact 都是用来描述quadprog算法性能的。对于这些值之后我们将进一步讨论。现在,让我们先可视化二次规划的解。为此,我们在Q(x,y)的可行域边界添加一个外侧的等高线图。
在图中,深绿色区域表示Q(x,y) 表面目标函数值较小的解,而亮色表示目标函数值较大的解。红点是Q(x,y)的全局最小值点,而黄点表示二次规划的解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03