一家中等规模的百货商场,通过视频监控记录下商场各个区域的客流人数,从而评估每天各个时段客流的在店时长,进而结合销售记录数据估算出客流中带有明确购买目标的“搜索型”顾客和无明确购买目标的“浏览型”顾客的比例,从而为之设计针对性的营销手段和服务措施。
这一实践中所涉及的数据量,从技术视角上看并不算庞大,但该商场对多源数据的整合和开发,不失为基于大数据管理的一种典型体现。
从理论上来说,每个企业都可能拥有大数据,但是并非每个企业都能够成为大数据企业。
大数据因其体量之“大”而得名,然而体量并非大数据的唯一特征,甚至也不是大数据最为重要的特征。巨大的体量凸显的是技术需求。而对于管理者而言,刻意追求巨大体量的数据并不具有多少现实意义,大数据更重要的特征在于其多样化的来源和形态、持续快速的产生和演变,以及对深度分析能力的高度依赖。因此,企业对大数据的驾驭和掌控,其核心并不在于拥有多大规模的数据,而在于是否能够对来自于企业内外部多样化信息源的涌流数据进行敏捷持续的捕捉和整合,并通过深度分析开发其商务价值。
在管理视角上,大数据既不是一种技术,也不是一种应用系统,而更应该是一种立足于企业内外部数据融合以提升管理效率、开拓价值创造模式的管理思维。
驾驭企业内部大数据
企业内部数据有两个主要维度:
一是与业务功能及流程紧密相关的数据,如库存信息、物料需求信息、生产计划信息、采购信息等,可统称为业务流程信息;
二是企业内员工及各种管理系统在其日常工作及活动中所创造、记录、交换和积累的信息,例如员工间的交流记录、工作心得、经验分享、活动新闻等,可统称为知识及沟通信息。
这两个数据维度的发展和融合,催生出了企业内部大数据。如图1所示。
在集成化企业系统、内部社交媒体以及深度数据分析技术的共同支撑下,杰克·韦尔奇所畅想的“无边界组织”在新兴环境下成为可能,并被赋予了新的内涵。部门边界、层级边界被紧密的业务联系和广泛的社交联系所弱化,结构化的业务流程信息与非结构化的知识及管理活动信息被多维度融合的深度数据分析能力连接在一起,从而使企业真正具有驾驭内部大数据的能力。
驾驭企业外部大数据
在企业外部的视角上,数据资源也包括两个维度:
一是与上下游交易直接相关的供应链信息,如交易报价信息、订单信息、上下游企业库存及生产能力信息等;
二是市场及社会环境信息,如原材料价格走势、市场需求及消费者偏好信息、顾客服务及满意度信息等。
企业外部大数据的基本特征,也正是在这两个维度的发展之中呈现出来的。如图3所示。
供应链信息集成与社会化商务信息的融合,构成企业外部大数据的核心特征。来自于社交媒体信息源的市场环境信息与来自于组织间信息系统的供应链信息相结合,借助于深度数据分析技术实现面向企业商务网络的预测与优化,并支撑起实时化、精确化、个性化的消费者洞察与敏捷响应,在此基础上为基于网络协同及社会化商务的模式创新提供了丰富的可能性。从而,对外部大数据的管理和驾驭,也将成为现代企业在网络化的商务生态系统中占据主导地位并获取经营优势的关键途径。
成为“大数据企业”
基于以上分析,企业内部大数据的焦点,在于业务流程信息与知识及沟通信息的融合;企业外部大数据的焦点,在于供应链信息与市场及社会环境信息的融合。进而,大数据时代企业组织的基本内涵,在于内部大数据与外部大数据的全方位融合。如图4所示,大数据企业立足于内外部业务与社交媒体数据的集成交汇。
在这四大类型的数据之间,致力于大数据管理的企业可以有两种不同的发展策略。其一是以社交媒体与业务数据的融合为主导,以期通过敏捷响应快速发现并应对内外部环境中的变化和机遇。在这种策略下,面向高速数据流的实时数据采集和分析方法,将成为大数据管理的主要支撑手段。
第二种策略是以内外部数据融合为主导,以期通过全面汇集内外部信息,对中长期发展趋势作出准确的预判,从而实现高度优化的业务决策,并通过对信息环境的掌控,获取企业网络生态系统中的领导地位。在这种策略下,大规模多源异构数据的采集、清洗和整合方法,将成为大数据管理的核心支撑。
如何挖掘企业大数据的价值
企业大数据的价值开发高度依赖于深度数据分析能力。从内外部融合的视角上看来,企业大数据分析包括三个基本维度,即内容、关系和时空。
内容维度指的是数据本身所承载的信息内容。例如,G公司是一家大型电信服务商,其内部建设实施了一套“班组博客”系统。在这个内部社交媒体平台上,公司中的3000多个工作团队都开设了自己的博客,用于发布和交流工作经验、生活体验等方面的内容。经过数年的发展,整个博客系统中积累了博文700多万篇,评论超过1500万条,并保持着每月15万篇以上的博文发表数量,年阅读量超过1000万篇次。对于这一平台所积累的大量数据的价值开发,首先体现在对其信息内容的提炼上。平台上与工作相关的博文内容,如客服案例、经验分享等,经自动筛选分类、主题识别、关键词索引之后,被构建成企业知识库,为业务及管理工作提供快速有效的知识支撑,同时成为员工培训和自学的有力工具。而大量与工作无关的博文和评论内容,包括生活常识、娱乐信息、心情表达、心灵鸡汤等,在智能化的分类整理之后,也成为了该公司的一个独特的文化情景,支撑着企业中活跃的氛围,强化了员工的文化认同。
关系维度指的是数据及其所指代的对象之间的联系。在G公司的班组博客中,员工的发表、阅读、评论、回复、关注等行为详尽地反映了其相互之间密集而持续的联系,而这些联系毫无遗漏地被记录在平台的数据库之中。通过对这些关系结构的深度分析和挖掘,G公司获得了对员工及团队的影响力、凝聚力、创造力的更为准确而深入的评估手段。进一步而言,博客平台的行为记录数据与业务系统中的事务处理记录数据,以及员工及团队的绩效表现数据,也能够被有效地关联起来,从而使得管理者拥有强有力的工具,帮助其发现和理解员工的行为特质、工作表现、业务能力之间的潜在关联,进而实现良性优化的人员配置和人才培养。
时空维度指的是数据生成及传播的位置以及数据随时间演变的模式。对G公司而言,其数以千计的业务场所分散在众多城市的不同地点,因此,数据中的位置信息对于虚拟化的团队协同而言具有直接的意义。此外,位置信息也包括了数据在组织功能结构和层级结构中所处的位置。同时,在G公司的班组博客中,对特点话题时间演变规律的分析,也为管理者提供了有效的参考。其中对企业重要活动、运营理念相关信息在班组博客中的传播演变模式的跟踪,有效地揭示了员工对管理理念的认知、态度和接受过程。
更深入的价值开发来自于上述三个维度的交叉综合。例如,内容维度与关系维度的结合,使得G公司能够识别员工的兴趣偏好、社交特质、工作性质以及工作表现之间的匹配关系,也能够更为准确地发现那些分散在不同的员工手中、但具有重要潜在影响力的经验、创意以及机遇信号。内容维度、关系维度与时空维度的结合,使得企业能够更为深入地理解不同的员工特质、知识技能、团队特性、热点偏好在整个组织中的分布,以及这些结构随时间演变的过程和趋势,从而更为有效地调度和配置这些资源。
这些维度上的分析需求,主要需要三方面的数据分析技术予以支撑。第一类是全局视图技术。对于管理者而言,对大数据内容全局状况的把握,往往是开发大数据价值的一个基本需求。然而大数据的体量和结构复杂性往往远远超出人类认知的信息承载能力。因此,有效的技术应当能够在大量数据中提取出一个足够小的集合以呈现给管理者,并使得这个小集合能够充分地代表数据全局。例如,在G公司的博客平台上,一种“代表性博文提取”技术能够在每天所出现的数以千计的博文中自动选择出10篇。这10篇博文在很大程度上全面代表了当天所出现的数千篇文章,既充分反映热点,也不能忽略冷门信号,从而使得管理者能够通过阅读这些文章来了解全局。第二类支撑技术是关联发现技术,其目标在于敏锐识别数据间的联系。例如,当G公司试图整合博客平台、业务系统、人力资源系统中的数据以全方位分析员工、团队特质以及绩效信息时,大量的数据属性之间所构成的复杂潜在关联网络,就需要强有力的关联发现技术来加以处理。第三类支撑技术是动态跟踪技术,即实时化的流数据分析处理、快速增量数据分析。三方面技术都处于快速发展之中,但尚未全面成熟,有待于学界和业界的持续努力和探索。
结束语
从一定意义上说来,业务资源集成与社交媒体相融合的过程,是一个“信息去中心化”的过程。信息资源的创造和管理,从以往以经营和运作为核心的中心化模式,转化为以分散创造、自由传播、灵活汇聚为特征的众创模式。另一方面,内外部数据融合的过程,是一个“信息去边界化”的过程。企业部门之间的信息交换、企业之间的信息交换以及企业与市场环境的信息,以日益多样化、实时化的方式实现。
这样的转变对于企业组织及其员工而言,其影响将会是多方面的。正面的影响可能包括创新意识与创新行为的出现、员工能力和技能的发展、沟通满意度的提升、员工关系资本的建立和积累、员工对组织的认同和归属感的增加;而负面的影响则可能包括员工注意力分散、过度争论,以及负面情绪的传播等。所以,建设“大数据企业”的过程,也将会是一个伴随着困难与风险的过程。在此过程中,需要管理者有效地把握创新发展的长期收益与短期业绩之间的平衡,在推进大数据融合的同时防范和控制其中的组织风险,并审慎地思考和重新定义组织内外部边界。
换言之,对企业而言,大数据实质上是一种管理思维,其支点在于业务信息资源与社交媒体的融合,以及内外部数据的融合,在这样的支点上反思企业的组织形态、运作范式和价值创造模式,是“大数据企业”的真正内涵所在。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21