企业常见的三种数据部门架构优与
问题:为什么传统BI没有达到今天互联网数据应用的高度呢?
在之前的传统BI可能因为这些因素,所以没有达到今天的数据在高度,可能是互联网本身发展的因素,数据对于互联网企业价值。但其中有一个很大的因素,可能是传统的BI,更多是偏重数据仓库的架构,根据需求来帮报表。在数据部门没有一批主动去思考业务,思考业务与数据关系的人。这种人很可能都是在业务方,他们更多把业务问题转为要看的报表,然后与数据部门沟通报表开发,数据部门收集需求沟通后,进行排期,进入比较慢长的等待期。
在一个企业中,可能数据部门在一个公司中组织架构中的位置,决定了部门的定位和一些做的事情,所以个人认为数据部门所处的组织架构对数据价值实现是一个很重要因素。这也是今天我也来谈一谈的主题。
我先把数据部门分成二个部门:一个我们就叫前端,例如:数据分析,数据挖掘,数据产品等;一个我们叫后端:数据仓库,大数据平台等;
第一种形式,分散式
数据平台由技术部建设,技术没有数据分析/业务分析人员;这部分人员都分到各个业务块中。
技术部负责搭建大数据平台(在传统主要叫数据仓库)
目前大数据平台,如果比较大型的公司基本上会包括几块内容:
分布式:hadoop 平台;
实时计算: storm平台
内存计算:spark 平台
传统关系数据库
业务分析人员怎么得到数据:
方式一:向数据平台接口人提需求,在传统的BI部门中一定会有一种叫:需求分析/数据PD这种角度;这种角度就是把业务方的进行转化,转为PRD文档,让ETL开发工程师,报表开发工程师实现 。【业务人员是没有访问数据仓库的权限的】
方式二:当一些业务方比较强势,或者对响应速度比较有意见的时候,可能会开放所有或者部分给业务人员进行去访问,业务可以自己去写SQL去取数据。
这种在一些业务变化不快,或者业务相对不那么复杂的公司可能比较好。但是如果是一些业务复杂,业务变化非常快的可能就不适合。为什么?
数据平台/仓库建议跟不上业务变化。造成数据仓库效率低,数据口径混乱。因为数据仓库架构离业务比较远,对业务理解不深。
业务数据分析师很多人的知识不能很有效沉淀下来。
这会导致业务要求为各个业务建议自己 “数据集市”,当这种数据集市我的时候,又会造成数据仓库负担中,各个业务方的数据“各大自为政”。
最终公司数据混乱,后面大家对数据都摇头。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20