产品经理学习数据分析,可以先看看这些建议
大数据时代的到来,对产品经理提出了更加严格的数据分析要求。一个懂数据分析的产品经理可以利用数据驱动产品设计优化,并提升客户体验。
那么,产品经理到底该关注哪些数据呢?小产品如何运用A/B测试?产品经理该如何学习数据分析呢?希望本文对产品经理提升数据分析能力有较好的帮助。
问:一个电商平台,应该着重关注什么数据,怎样设计数据后台?
答:电商数据的核心指标一般有:GMV、Transations(交易数量)、ASP(均价)、购物车大小、用户的复购率、购买频次、年度复购率。这样的指标很多。我觉得有三类的指标需要关注:
这里面,我觉得您可以根据自己的资源状况来设优先级。最直接的就是交易数据,然后最重要的是行为数据,因为所有的电商提供的是“互联网产品”而不仅仅是“所销售的产品”。第三就是流量的数据的分析,因为这里涉及到获取客户的成本。
问:如何收集自己需要的数据,面对杂乱无序的数据该如何分析,如何保证数据的准确性
答:不同行业,不同业务会有相同宏观的指标,也有细化到本行业,本业务的指标。需要从宏观到微观的拆解指标。大量的数据如何为我们所用?需要了解产品业务,明确问题的本质,大量的深入的产品实践。大胆的提出假设,然后通过数据理性的验证。我们还会有更多的线下线上活动帮助大家拆解数据分析指标。
关于数据准确性可以不同的工具去验证。比如同时安装多个数据统计工具。比如比较客户端和服务端的数据统计差异。
问:做内容的网站,如何结合业务判断需要获取哪些和用户相关的数据?
答:最基本的指标是:
页面浏览量、访问量、独立访客数、跳出率、页面停留时长、网站停留时长、退出率、转化率,页面退出率……
内容热度:分享次数、推荐次数、点赞次数、评论数
用户:新用户、活跃用户、沉寂用户占比的变化,增长的趋势等等
问:不强制登陆的app,如何定义独立用户。目前我们是获取手机信息,但并不准确
答:不强制登录,可以在app和设备的基础信息在不侵犯用户隐私的情况下,计算一个比较固定的ID。这个ID应该基本上能够判断一个稳定的用户。但是它并不和手机号码或者设备号做深度绑定。在网站上类似cookie的方法。
问:若想了解某个行业,有哪些平台可以拿到相对靠谱数据以供分析?
答:这个部分需要的工具有很多,看您的业务是以App为主,还是Web为主。基本上应该从流量,市场占有率,还有用户交互使用深度、舆情等角度入手。每一个都有不同的工具能够辅助。比如说Alexa,AppAnnie,艾瑞的互联网行业研究报告,Gartner的研究报告,IDC,TalkingData的游戏行业研究等等都是一些好的起点。
如何进行数据分析,如何用数据分析驱动产品优化?
问:2B企业应应用如何做基于数据驱动的产品设计与改进?
答:SaaS企业的数据驱动产品设计非常重要。首先,最基础的开始是Product Usage Metrics。因为SaaS产品都要解决一个企业应用的场景。 而这个场景在业务上的被重现频次,决定了SaaS软件的基本交互频次。所以登录批次,使用深度(事件数/访问)等最基本的指标是最粗放的指标。
最重要的,是产品每一个功能的使用者数量,使用的频次,转化漏斗,转化率。
请记住,这些分析必须要在“用户”级别能够做分析,而不是一个单纯流量级别的分析,才有未来的核心意义。然后将usage在客户公司级别进行汇总,比较在公司级别的使用度,使用深度和未来的续约付费率一般呈正相关。
还有就是整个SaaS页面的优化,比如说注册流,注册转化率,注册用户向深度用户的转化率,深度用户向付费用户的转化率。SaaS的数据分析是很深入的话题,我就是分享一些最基本的指标。
问:关于留存率,互联网金融借贷产品是典型的低频,一个人不可能经常上来借钱或者出借,看留存率还有意义么?
答:留存率有意义,因为留存是一个普遍的概念。唯一的一个就是您专注“频次”的不同。比如说买汽车,美国的整个汽车购买行为,不可能用天来衡量,而要用年。因此美国的汽车制造商,就持续的按照“月份”给每一个不同的区隔发送不同的营销方案。互联网金融也有他的产品生命周期,这要求您来制定营销策略,找到那个“频次”,以此为开始进行营销产品规划。
问:支付转化率比较低,这种情况通过什么点,什么角度去分析用户行为?
答:先要全面的找到支付转化的全部关键转化路径,然后看每个转化路径上面关键点之间的转化率。比如到商品详情页面,可以从搜索页面、分类页面、频道页面、品牌页面、活动页面、首页、关联销售推荐、甚至直接访问到达商品详情页面。每个转化路径和转化量的占比都要考虑。然后再找出量大且转化率低的路径先优化,量小转化率高的路径可以加强并且scale。
问:针对工具类的app,有什么好的数据分析方法吗?需要注意哪些问题?
答:我觉得取决于您的app在产品发展的哪个周期?工具类的APP,我个人认为核心,特别是早期还是应该关注“usage”,用户的使用度,和使用深度/黏度,也就是留存。然后要关注增长,其次未来要关注变现。用增长黑客的“海盗法则”来讲的话,就是在“AARRR”逻辑里面,首先关注留存(Retention)。
Acquisition 获取用户
Activation 激发活跃
Retention 提高留存
Revenue 增加收入
Referral 传播推荐
问:统计学、分析和挖掘的书看了不少,如何系统的学习数据分析与挖掘,希望能得到指点!
答:首先如果您有时间,看看精益分析《lean analytics》,这本书是我在美国很好的朋友写的书。另外一本《build measure,learn》也是我在LinkedIn的团队成员写的书。都是很好的入门教材。再次我觉得可以看一下基础的统计书籍,因为数据分析的核心要有基本的统计知识。Using R系列是很好的起点。
问:数据方面偏菜鸟用户,有哪些数据可视化工具值得推荐?
答:tableau是一个很好的数据可视化工具。自己开发可以试试highchart和D3 document。
问:可以推荐几本关于数据的书吗?
答:《Lean Analytics》,范冰的《增长黑客》,《Lean Startup》,中文的《深入浅出数据分析》,Tableau的很多爱好者推崇的《人人数据分析师》等等。不过我觉得好的数据分析的书籍,不如一次好的数据分析实际操作加上分享您能学到的更多。主要是概念的基本掌握,然后迅速落地实践,复盘分析结果,然后继续迭代。特别是产品分析,最关键的是要把数据分析和用户行为以及产品设计用一体的角度来考虑,然后分解成三个部分来验证。就会有闭环。
问:以前我们做数据统计,数据分析,都必须要攻城狮在相关行为中埋点;GrowingIO的无埋点统计分析是什么原理?
答:GrowingIO希望能够直接从业务人员的角度出发,让业务人员最快的获得想要分析的数据,并且同时减轻工程人员埋点的痛苦。GrowingIO的无埋点技术支持多个平台,iOS, Android,Web和HTML5。主要的原理是在网页和HTML5的里面加入一次SDK代码,在iOS和Android加入一次SDK代码,之后不用再加载SDK代码,用户使用网页和APP客户端的时候尽可能全的收集用户的行为数据,通过异步且加密的方式传输数据。
问:GrowingIO能帮助优化产品设计和用户体验吗?
答:GrowingIO是新一代基于用户行为的数据分析产品,目前提供的用户转化、留存、细查、分群功能都可以帮助产品经理优化产品设计,进而提升用户体验。
以在线商城页面设计为例,用户浏览商品、提交订单,点击支付,完成购买形成了客户的核心路径,但是日常业务中经常遇到客户转化率过低的情形。GrowingIO的用户转化漏斗可以帮助产品经理分析客户到底在哪一步流失较高,然后借助用户细查功能来验证前面的假设猜想。从而提升帮助产品经理找出产品设计的缺陷,后期尽快优化。
问:小产品是否适合使用“A/B test”测试优化产品,前期的技术准备是否麻烦?
答:产品非常早期,我个人不建议用A/B测试,因为最主要的问题是我们没有很多资源开发两套或者更多的产品方案。而且早期数据量小,不一定能够有“统计学意义”,往往测试者需要把流量分解,这样就需要等待结果。对于低流量的app/网站,没有足够的资源来等。工程上也有一定的挑战。所以我建议早期产品关注核心指标,分解核心指标为“可执行的指标”比A/B测试更重要。同时要迅速迭代。A/B测试对于产品线丰富的业务还是有很多作用的。看您的资源配置了。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16