京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用SPSS做数据分析?先弄懂SPSS的基础知识吧
1、SPSS数据分析的流程

2、SPSS特性:
易用性强
操作界面极为友好,操作简单
良好的帮助系统和自学功能
为高级用户提高编程功能
功能强大
成熟的统计过程
完美的图形处理功能
提供多种数据准备技术
兼容性好
数据输入:Excel,Lotus,Oracle,SQL Server,Acess,dBASE,文本
数据输出:Word,HTML,XML,Excel,Powerpoint,PDF.
3、数据的编辑
常量
数值型常量:除了普通写法外还可以用科学计数法,如:1.3E18;
字符型常量:用单引号或双引号括起来如果字符中包含单引号,则必须使用双引号;
日期常量:日期个数的数据,一般需要使用日期函数进行转换;
变量
变量名长度不能超过8;
三种基本的类型:数值、字符和日期;
可以在variable view界面设定变量的长度及小数位、变量的描述、变量值的描述、missing值、显示宽度、对齐方式和变量的测度方式;
变量的测试方式
Scale:定距变量,如:身高、体重等;
Ordinal:定序变量,如:教育程度、级别等;
Nominal:定类变量,如:性别、民族等;
操作符与表达式
三种基本的运算:数学、关系和逻辑
数学运算符:+ – * / ** ()
关系运算符:> >= < <= = ~=
逻辑运算符:&(AND) |(OR) ~(NOT)
三种运算对应三种表达式
常用的数据操作命令
Data->Sort Cases
Transform->Rank Cases
Transform->Count
Transform->Recode
Transform->Automatic Recode
Transform->Compute
Data->Transpose
Data->Split Files
Data->Merge Files
Compute
数值型:compute num1=value.
字符型:String A(a11).compute a=’hello world’.
日期型:compute data1=date.mdy(month,day, year).
Rocode
recode variable name(old value=new value).
recode variable name(old value=new value) into new variable name.
字符型变量使用auto recode
Split file
有的时候需要对变量做些分组的分析,但一些分析方法并不提供分组变量的设置选项这就需要用到Split file命令;
例如使用 Descriptives 做描述性分析,如果想分年龄做分析,这样就可以用年龄变量做为分组变量;
可以看到这里的Split其实是分组,而不是拆分文件;
analyze all case分析所有的样本,不产生分组;
compare groups产生对比分析组;
output by groups分组输入分析结果;
Merge File
add cases 合并变量相同,但是case不同的文件;
add variables合并变量不同,case相同的文件这里的变量不同可以是部分的变量不同,case相同也可以是一个文件的case是另外一个文件的子集;
数据的分类汇总
使用Aggregate命令
指定分类变量对观测量进行分组,对每组观测量的各变量求描述统计量;
检查重复的数据
使用identify duplicate cases
数据的加权
使用weight case
选取一定的case进行分析
使用select cases:在对数据的子集进行分析的时候需要用到这个命令;
常用的数学函
取绝对值:abs(数字型表达式)
求余数函数:mod(数字型表达式,模数),模数不能为0该函数在需要对某一变量求模数的余数时使用,如果对一个顺序编号或自然数序列求模数的余数,可将该序列按模数等距分类,从而实行等距抽样;
四舍五入函数:rnd(数字型表达式)
开方函数:sqrt(数字型表达式)
四、基本的统计分析
SPSS统计分析概述:
针对不同类型的数据选取不同的分析方法,正确的分析方法是得到正确结果的关键;
spss提供数字分析和图形分析两种分析形式;
高级分析之前一般都需要做描述性统计分析,把握数据的规律对分析解释数据有很好的引导和帮助作用;
Descriptive Statistics
– Frequencies:频数分析
– Descriptives:描述统计
– Explore:探索分析
– Crosstabs:列联表分析
– Ratio:比率分析
Descriptives
– 可以对变量进行标准化;
Explore
– Explore是对连续性变量进行探索性分析最有效的工具;
– 考察数据的奇异性和分布特征;
– 箱盒图、茎叶图、正态检验图及方差齐次性检验;
Crosstabs
– 数据类型要求为分类变量;
– 二维或多维交叉频数表(列联表),分析事物(变量)之间的相互影响和关系;
– 可以做卡方检验,来分析行列变量之间是否存在相关性;
分类变量统计描述常用指标
– 统计量:
• 频数、频率、累计频数、累计频率、众数
• 比:任意两个变量之比
性别比,货物/销售人员比
构成比:部分占总体的比例
• 率:事件的发生强度
– 图形:
• 条图、饼图
Spss操作
– 单个变量的分析
• Analyze…Descriptive Statistics…Frequcencies
– 多个变量的分析
• Analyze…Descriptive Statistics…Crosstabs
– 条图
• Graph…(interactive…)bar
– 饼图
• Graph…(interactive…)pie
连续变量的描述指标
– 频数表Frequency
• 直观的方法:分布类型分布特征
– 集中趋势Central tendency
• 均数mean 中位数median 众数mode
– 离散趋势Dispersion tendency
• 全距Range
• 方差Variance 标准差std.deviation
如何计算各个描述统计量
– Analyze->Descriptive Statistics->Frequcencies…
– Analyze->Descriptive Statistics->Descriptives…
– Analyze->compare means->means…
• 如何用图形描述连续变量
– Graph…Interactive…Histogram
• 如何应用Explore对连续变量进行探索性分析
– Analyze->Descriptive Statistics->Explore…
Basic Tables过程:对分类/定量资料进行各种复杂格式的描述;
• General Tables过程:在同一张表格内同时对分类资料、连续资料和多选题数据进行汇总功能非常强大,但使用上相对复杂;CDA 数据分析师培训
• Custom Tables过程:含有表格预览窗口,并可在制表过程中控制结果;
• Multiple Response Sets/Tables过程:专门为多选题数据设计的制表过程;
• Tables of Frequencies过程:在同一张表格中对多个分类变量同时输出频数表;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05