用SPSS做数据分析?先弄懂SPSS的基础知识吧
1、SPSS数据分析的流程
2、SPSS特性:
易用性强
操作界面极为友好,操作简单
良好的帮助系统和自学功能
为高级用户提高编程功能
功能强大
成熟的统计过程
完美的图形处理功能
提供多种数据准备技术
兼容性好
数据输入:Excel,Lotus,Oracle,SQL Server,Acess,dBASE,文本
数据输出:Word,HTML,XML,Excel,Powerpoint,PDF.
3、数据的编辑
常量
数值型常量:除了普通写法外还可以用科学计数法,如:1.3E18;
字符型常量:用单引号或双引号括起来如果字符中包含单引号,则必须使用双引号;
日期常量:日期个数的数据,一般需要使用日期函数进行转换;
变量
变量名长度不能超过8;
三种基本的类型:数值、字符和日期;
可以在variable view界面设定变量的长度及小数位、变量的描述、变量值的描述、missing值、显示宽度、对齐方式和变量的测度方式;
变量的测试方式
Scale:定距变量,如:身高、体重等;
Ordinal:定序变量,如:教育程度、级别等;
Nominal:定类变量,如:性别、民族等;
操作符与表达式
三种基本的运算:数学、关系和逻辑
数学运算符:+ – * / ** ()
关系运算符:> >= < <= = ~=
逻辑运算符:&(AND) |(OR) ~(NOT)
三种运算对应三种表达式
常用的数据操作命令
Data->Sort Cases
Transform->Rank Cases
Transform->Count
Transform->Recode
Transform->Automatic Recode
Transform->Compute
Data->Transpose
Data->Split Files
Data->Merge Files
Compute
数值型:compute num1=value.
字符型:String A(a11).compute a=’hello world’.
日期型:compute data1=date.mdy(month,day, year).
Rocode
recode variable name(old value=new value).
recode variable name(old value=new value) into new variable name.
字符型变量使用auto recode
Split file
有的时候需要对变量做些分组的分析,但一些分析方法并不提供分组变量的设置选项这就需要用到Split file命令;
例如使用 Descriptives 做描述性分析,如果想分年龄做分析,这样就可以用年龄变量做为分组变量;
可以看到这里的Split其实是分组,而不是拆分文件;
analyze all case分析所有的样本,不产生分组;
compare groups产生对比分析组;
output by groups分组输入分析结果;
Merge File
add cases 合并变量相同,但是case不同的文件;
add variables合并变量不同,case相同的文件这里的变量不同可以是部分的变量不同,case相同也可以是一个文件的case是另外一个文件的子集;
数据的分类汇总
使用Aggregate命令
指定分类变量对观测量进行分组,对每组观测量的各变量求描述统计量;
检查重复的数据
使用identify duplicate cases
数据的加权
使用weight case
选取一定的case进行分析
使用select cases:在对数据的子集进行分析的时候需要用到这个命令;
常用的数学函
取绝对值:abs(数字型表达式)
求余数函数:mod(数字型表达式,模数),模数不能为0该函数在需要对某一变量求模数的余数时使用,如果对一个顺序编号或自然数序列求模数的余数,可将该序列按模数等距分类,从而实行等距抽样;
四舍五入函数:rnd(数字型表达式)
开方函数:sqrt(数字型表达式)
四、基本的统计分析
SPSS统计分析概述:
针对不同类型的数据选取不同的分析方法,正确的分析方法是得到正确结果的关键;
spss提供数字分析和图形分析两种分析形式;
高级分析之前一般都需要做描述性统计分析,把握数据的规律对分析解释数据有很好的引导和帮助作用;
Descriptive Statistics
– Frequencies:频数分析
– Descriptives:描述统计
– Explore:探索分析
– Crosstabs:列联表分析
– Ratio:比率分析
Descriptives
– 可以对变量进行标准化;
Explore
– Explore是对连续性变量进行探索性分析最有效的工具;
– 考察数据的奇异性和分布特征;
– 箱盒图、茎叶图、正态检验图及方差齐次性检验;
Crosstabs
– 数据类型要求为分类变量;
– 二维或多维交叉频数表(列联表),分析事物(变量)之间的相互影响和关系;
– 可以做卡方检验,来分析行列变量之间是否存在相关性;
分类变量统计描述常用指标
– 统计量:
• 频数、频率、累计频数、累计频率、众数
• 比:任意两个变量之比
性别比,货物/销售人员比
构成比:部分占总体的比例
• 率:事件的发生强度
– 图形:
• 条图、饼图
Spss操作
– 单个变量的分析
• Analyze…Descriptive Statistics…Frequcencies
– 多个变量的分析
• Analyze…Descriptive Statistics…Crosstabs
– 条图
• Graph…(interactive…)bar
– 饼图
• Graph…(interactive…)pie
连续变量的描述指标
– 频数表Frequency
• 直观的方法:分布类型分布特征
– 集中趋势Central tendency
• 均数mean 中位数median 众数mode
– 离散趋势Dispersion tendency
• 全距Range
• 方差Variance 标准差std.deviation
如何计算各个描述统计量
– Analyze->Descriptive Statistics->Frequcencies…
– Analyze->Descriptive Statistics->Descriptives…
– Analyze->compare means->means…
• 如何用图形描述连续变量
– Graph…Interactive…Histogram
• 如何应用Explore对连续变量进行探索性分析
– Analyze->Descriptive Statistics->Explore…
Basic Tables过程:对分类/定量资料进行各种复杂格式的描述;
• General Tables过程:在同一张表格内同时对分类资料、连续资料和多选题数据进行汇总功能非常强大,但使用上相对复杂;CDA 数据分析师培训
• Custom Tables过程:含有表格预览窗口,并可在制表过程中控制结果;
• Multiple Response Sets/Tables过程:专门为多选题数据设计的制表过程;
• Tables of Frequencies过程:在同一张表格中对多个分类变量同时输出频数表;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08