
设计思维对数据分析意味着什么?
从IBM这样的工业巨头,到Airbnb这样的初创公司,设计思维在 企业 团队的脑海中无疑处于最突出的位置。“筑巢引凤”的传统思维已经被客户分析和同理心驱动原型设计等技术所取代。如今讲究的是用户为先,而不是产品为先。
虽然设计思维并非新鲜事物,除了产品研发以外还有许多其他用例,但很多公司不知道如何利用这种思维来改善他们的业务,尤其是在数据分析和决策科学等新兴领域里。
究其本质,设计思维是把用户及其需求作为研发新产品和制定解决方案的出发点。首先是问:我们为谁设计?他们遇到了什么问题?其次:我们设计模型的目的是什么?是刺激消费和参与度、提升性能还是实现规模化?
这些问题着手分析工作的一开始就要提出来。不属于传统设计领域的人,包括数据和决策科学家,也可能成为出色的设计师,他们只是缺乏基本的指导来唤醒他们身体里这股沉睡的力量,并在数据密集的背景下加以运用。
有鉴于此,以下是向数据分析灌输设计思维的五个简单但关键的步骤:
1. 创建一种使你可以尽早回头的设计框架
企业可能会在没有建立适当框架的情况下,就匆忙地开始制定解决方案。这是错误的做法,会导致生产力的损失,使无数的人力物力浪费在从一开始就绝对不应该设计的产品上。
上图是斯坦福大学设计学院演示的一个简单框架,其参数能够应用于任何一种产品、想法或设计。这个框架使你可以保持正确的方向,专注于问题和你所服务的客户。同样重要的是,这个设计框架使你可以尽早回头并降低失败成本,不至于浪费资源试图把方形盒子放进圆形孔洞。
2. 站在客户的角度思考,让产品人性化
与传统的思维模式完全不同,设计思维寻找痛点,创造出满足需求或者解决问题的产品。作为问题解决者,在测试新想法或假设的过程中必须进行换位思考。
在上文提及的那个设计框架中,最左边的一栏完全只用来找出真正的问题和探究用户对那些问题的情绪反应。在设计过程的这一阶段,企业是站在用户的角度思考,深入了解客户需求的方方面面,为了透析客户而进行采访、开展调查、建立焦点小组并在日常环境中观察用户,勤勤恳恳地做记录和查看视频。结果可能会让你大吃一惊。
所有这些工具收集到的信息被用来定义问题和制定解决方案。最后,产品便具有了情感价值主张、生产力,以及从一开始就作为设计目标的易用性。
3. 专注于使你可以进行快速试验的问题解决方法
通过移情研究获得各种信息后,接着就是定义问题的艰苦工作。问题的描述方式应该清晰明了,包括谁是用户、他们想做什么、他们为何想这么做、是什么问题妨碍了他们、他们对问题有何感受。问题陈述应该有一个明确的着眼点,并能够激发快速试验。
美国银行(Bankof America)的“保存零头”服务就是一个很好的例子。起初,当该团队着手帮助客户增加储蓄的时候,他们发现问题不在于该银行的服务,而在于储蓄习惯难以改变,客户很少会主动增加存款。
利用设计思维原则,美国银行测试了不同的想法,发现储蓄过程实际上并不费事,只是需要站在用户的角度思考。最后,他们推出了一种借记卡,可以自动将每笔交易的支付金额取整,然后把零头直接存进储蓄账户。这项服务是自动进行的,而且只涉及多余的零头(不是整数),因此客户几乎不会注意到这种变化。该银行也受益匪浅。“保存零头”服务使美国银行获得了500万新客户、700万个新开支票账户和100万个新开储蓄账户,同时帮助客户总共增加了5亿美元存款。
4. 利用各种方法激发跨团队的创造性想法
在制定问题的解决方案时,要利用团队之间的交叉功能。记住,设计思维是一项团体活动。不久前,营销部门和 数据分析 还没有相互结合。随着企业内部的问题越来越复杂和隐晦,整合多个团队的观点和团队成员的不同看法对于产品的成功至关重要。获得跨团队见解的一个好办法是进行角色扮演,一个团队扮演用户,一个团队扮演产品开发者,一个团队扮演营销人员,等等。
如果你有数据科学家可供使用,各种统计学方法和回归分析法有助于发现意料之外的因素,并激发新的想法。机器学习技术和混合模型,比如决策树,能够根据重要性描绘不同的变量,这也能为设计思维过程提供依据。
5. 为了设计杀手级解决方案,让自然做你的向导
阿德里安·贝扬(Adrian Bejan)的名著《自然设计》(Design in Nature)写到,在自然界中发现的模式具有使传播范围最大化的倾向。比如,一条河分出很多支流,好让河水流经更广阔的地域。你会发现下图中的分布模式就具有这种倾向,以便更容易地进入各个位置。最好的设计方案也是一样:解决当前需求,同时为未来创造机遇。当你按照自然模式来指导设计时,最后得到的解决方案将在以后带来各种新的可能性(产品)。
房屋租赁网站Airbnb就是个很好的例子。2009年,该公司差点破产,努力想弄明白业务为什么没有起色。一天下午,该团队凝视着纽约市房源的搜索结果,他们发现,模糊不清的低分辨率照片不利于客户对房源产生好的观感。于是,Airbnb进行了一次试验。公司员工拿着相机前往纽约,为其用户拍摄房源的高清照片。在一周内,他们的营收翻了一倍。后来,Airbnb建立了一个由专业摄影师组成的庞大网络,帮助Airbnb用户拍摄漂亮的高清房源照片,不收取任何费用。作为一项额外待遇,专业摄影相当于Airbnb的正式认可,这提高了租户对房源信息的信任程度。专业摄影服务开启了交易“流”,甚至发展成为这家房屋租赁公司里的一个小部门。
就像自然界里的系统必须进化以求生存一样,如今企业面临的挑战变得日益复杂。然而,依靠适当的设计框架和上文列出的五个步骤,你可以加快产品开发过程,唤醒你身体里那股沉睡的设计力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07