写给喜欢数据分析的初学者
在耀眼的职业光环下,数据分析师自身的成长,几乎是与孤寂相伴,在高级打杂中,锻造而成。
最近接到一个职业访谈的邀请,要给对数据分析感兴趣的新人Y(目前在知名电商从事系统开发和维护)一些建议,才突然发现自己在这个领域打滚了一段时间,一阵感叹后,写下自己的一些体会,尽管不全面,但或许能够给新人一些借鉴。如有不妥地方,请各位数据大牛轻拍。
一、数据分析师有哪些要求?
1、理论要求及对数字的敏感性,包括统计知识、市场研究、模型原理等。
2、工具使用,包括挖掘工具、数据库、常用办公软件(excel、PPT、word、脑图)等。
3、业务理解能力和对商业的敏感性。对商业及产品要有深刻的理解,因为数据分析的出发点就是要解决商业的问题,只有理解了商业问题,才能转换成数据分析的问题,从而满足部门的要求。
4、汇报和图表展现能力。这是临门一脚,做得再好的分析模型,如果不能很好地展示给领导和客户,成效就大打折扣,也会影响到数据分析师的职业晋升。
二、请把数据分析作为一种能力来培养
从广义来说,现在大多数的工作都需要用到分析能力,特别是数据化运营理念深入的今天,像BAT这样的公司强调全员参与数据化运营,所以,把它作为一种能力培训,将会让你终生受益。
三、从数据分析的四个步骤来看清数据分析师需具备的能力和知识:
数据分析的四个步骤(这有别于数据挖掘流程:商业理解、数据理解、数据准备、模型搭建、模型评估、模型部署),是从更宏观地展示数据分析的过程:获取数据、处理数据、分析数据、呈现数据。
(一) 获取数据
获取数据的前提是对商业问题的理解,把商业问题转化成数据问题,要通过现象发现本质,确定从哪些纬度来分析问题,界定问题后,进行数据的采集。此环节,需要数据分析师具备结构化的思维和对商业问题的理解能力。
推荐书籍:《金字塔原理》、麦肯锡三部曲:《麦肯锡意识》、《麦肯锡工具》、《麦肯锡方法》
工具:思维导图、mindmanager软件
(二) 处理数据
一个数据分析项目,通常数据处理时间占70%以上,使用先进的工具有利于提升效率,所以尽量学习最新最有效的处理工具,以下介绍的是最传统的,但却很有效率的工具:
Excel:日常在做通报、报告和抽样分析中经常用到,其图表功能很强大,处理10万级别的数据很轻松。
UltraEdit:文本工具,比TXT工具好用,打开和运行速度都比较快。
ACCESS:桌面数据库,主要是用于日常的抽样分析(做全量统计分析,消耗资源和时间较多,通常分析师会随机抽取部分数据进行分析),使用SQL语言,处理100万级别的数据还是很快捷。
Orcle、SQL sever:处理千万级别的数据需要用到这两类数据库。
当然,在自己能力和时间允许的情况下,学习新流行的分布式数据库及提升自身的编程能力,对未来的职业发展也有很大帮助。
分析软件主要推荐:
SPSS系列:老牌的统计分析软件,SPSS Statistics(偏统计功能、市场研究)、SPSS Modeler(偏数据挖掘),不用编程,易学。
SAS:老牌经典挖掘软件,需要编程。
R:开源软件,新流行,对非结构化数据处理效率上更高,需编程。
随着文本挖掘技术进一步发展,对非结构化数据的分析需求也越来越大,需要进一步关注文本挖掘工具的使用。
(三) 分析数据
分析数据,需要用到各类的模型,包括关联规则、聚类、分类、预测模型等,其中一个最重要的思想是对比,任何的数据需要在参照系下进行对比,结论才有意义。
推荐的书籍:
1、《数据挖掘与数据化运营实战,思路、方法、技巧与应用》,卢辉著,机械出版社。这本书是近年国内写得最好的,务必把它当作圣经一样来读。
2、《谁说菜鸟不会数据分析(入门篇)》和《谁说菜鸟不会数据分析(工具篇)》,张文霖等编著。属于入门级的书,适合初学者。
3、《统计学》第五版,贾俊平等编著,中国人民大学出版社。比较好的一本统计学的书。
4、《数据挖掘导论》完整版,[美]Pang-Ning Tan等著,范明等翻译,人民邮电出版社。
5、《数据挖掘概念与技术》,Jiawei Han等著,范明等翻译,机械工业出版社。这本书相对难一些。
6、《市场研究定量分析方法与应用》,简明等编著,中国人民大学出版社。
7、《问卷统计分析实务—SPSS操作与应用》,吴明隆著,重庆大学出版社。在市场调查领域比较出名的一本书,对问卷调查数据分析讲解比较详细。
(四) 呈现数据
该部分需要把数据结果进行有效的呈现和演讲汇报,需要用到金字塔原理、图表及PPT、word的呈现,培养良好的演讲能力。
推荐书籍:
1、《说服力让你的PPT会说话》,张志等编著,人民邮电出版社。
2、《别告诉我你懂ppt》加强版,李治著,北京大学出版社。
3、《用图表说话》,基恩。泽拉兹尼著,马晓路等翻译,清华大学出版社。
(五) 其他的知识结构
数据分析师除了具备数学知识外,还要具备市场研究、营销管理、心理学、行为学、产品运营、互联网、大数据等方面的知识,需要构建完整广泛的知识体系,才能支撑解决日常遇到的不同类型的商业问题。
推荐书籍:
1、《消费者行为学》第10版,希夫曼等人著,江林等翻译,中国人民大学出版社,现在应该更新到更高的版本。
2、《怪诞行为学》升级版,艾瑞里著,赵德亮等翻译,中信出版社
3、《营销管理》,科特勒等著,梅清豪翻译,格致出版社和上海人民出版社联合出版
4、《互联网思维—独孤九剑》,赵大伟主编,机械出版社
5、《大数据时代—生活、工作与思维的大变革》,舍恩伯格等著,周涛等翻译,浙江人民出版社
四、关于数据分析师的职业发展:
1、数据分析师通常分两类,分工不同,但各有优势。
一类是在专门的挖掘团队里面从事数据挖掘和分析工作的。如果你能在这类专业团队学习成长,那是幸运的,但进入这类团队的门槛较高,需要扎实的数据挖掘知识、挖掘工具应用经验和编程能力。该类分析师更偏向技术线条,未来的职业通道可能走专家的技术路线。
另一类是下沉到各业务团队或者运营部门的数据分析师,成为业务团队的一员。他们工作是支撑业务运营,包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等。该类型分析师偏向产品和运营,可以转向做运营和产品。
2、数据分析师的理想行业在互联网,但条条大道通罗马,走合适你的路线。
从行业的角度来看:
1)互联网行业是数据分析应用最广的行业,其中的电商企业,更是目前最火的,而且企业也更重视数据分析的价值,是数据分析师理想的成长平台。
2)其次是咨询公司(比如专门的数据挖掘公司Teradata、尼尔森等市场研究公司),他们需要数据分析人才,而且相对来说,数据分析师在咨询公司成长的速度更快,专业也会更全面。
3)再次是金融行业,比如银行和证券等行业,该行业对数据分析的依赖需求,越来越大。
4)最后是电信行业(中国移动、联通和电信),它们拥有海量的数据,在严峻的竞争下,也越来越重视数据分析,但进入这些公司的门槛比较高。
五、什么人适合学习数据分析?
这个问题的答案跟“什么人适合学功夫”一样,毫无疑问,功夫是适合任何人学习的(排除心术不正的人),因为能够强身健体。而功夫的成效,要看习武者的修炼深浅。常常有人争论,是咏春拳厉害,还是散打厉害,其实是颠倒了因果,应该看哪个人练习得比较好,流派之间没有高低,只有人修炼的厚薄。
实际上,问题的潜台词是“什么人学习数据分析,会更容易取得成功(比如职业成功)”,这个要视乎你的兴趣、付出和机遇。但要做到出类拔萃,除了上面三点,还需要一点天赋,这里的机遇是指你遇到的职业发展平台、商业环境、导师和同事。借用管理大师德鲁克的话“管理是可以习得的”,管理并非是天生的,而数据分析能力,也可以后天提升。或许做到优秀,只需要你更加的努力+兴趣,而这个努力的过程,也包括你寻找机遇的部分。
六、关于如何学习:
学习方法千万种,关键是找到适合自己的,最好能够结合你的工作遇到的问题来学习。
1、搜集书籍、案例库和视频,先弄懂理论,然后学会软件操作,自己制作属于自己的教程。
比如,你学习聚类分析模型。
1)搜集相关的聚类分析模型的书籍、案例和教学视频,了解聚类分析的原理,主要有哪几种算法(划分、层次、密度、网格)、模型适用的范围和前提、如何评估模型的精确度等。
2)自己学会用软件来实现。
3)总结整理成一份PPT和制作操作视频,成为自己的学习教程,不断完善。
4)学习到一定程度后,可以在博客、微信等渠道分享,授人与渔,而自己也会有所收获。
下图是我自己整理的聚类分析和判别分析的专题
2、关注名人、名博、网站,多渠道学习。
1)关注专业的数据分析、咨询公司网站和论坛,特别强调,统计软件公司的网站如SPSS的官网有很多案例库,值得关注。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21